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Summary

Non-collaborative games involving multiple players exhibit equilibria wherein no player
has an incentive to deviate from their strategy

The quality of an equilibrium can be quantified by its social welfare – the mean
payout each player receives

Access to shared quantum resources may allow better cooperation, and hence better
equilibria

We consider two scenarios: in one, players may make measurements directly on a
quantum state, while in the other, they delegate the measurement to a referee

We study how to optimise the social welfare in these two settings and compare the
classes of equilibria obtainable on several games as a function of the bias of the game

Non-collaborative games

A non-collaborative game G between n players is defined by:

A set of questions T ⊆ {0, 1}n
A prior distribution Π over the questions T

A set of valid answers A ⊆ {0, 1}n
A payout function ui for each player i, with ui(a, t) ∈ R.

We consider payout functions with the form

ui(a, t) =


0 if (a, t) ∈ L
v0 if ai = 0 and (a, t) /∈ L
v1 if ai = 1 and (a, t) /∈ L,

with v0, v1 > 0 and L ⊆ A× T a set of “losing input-output pairs”
Ratio v0/v1 controls the bias of game

Example: Winning conditions for two 5-player games: NC00(C5) and NC01(C5) [1]

Question
t1t1t2t3t5

Winning condition, NC00(C5)

10000 a4 ⊕ a0 ⊕ a1 = 0
01000 a0 ⊕ a1 ⊕ a2 = 0
00100 a1 ⊕ a2 ⊕ a3 = 0
00010 a2 ⊕ a3 ⊕ a4 = 0
00001 a3 ⊕ a4 ⊕ a0 = 0
11111 a0 ⊕ a1 ⊕ a2 ⊕ a3 ⊕ a4 = 1

Question
t1t1t2t3t5

Winning condition, NC01(C5)

10100 a4 ⊕ a0 ⊕ a1 = 0
01010 a0 ⊕ a1 ⊕ a2 = 0
00101 a1 ⊕ a2 ⊕ a3 = 0
10010 a2 ⊕ a3 ⊕ a4 = 0
01001 a3 ⊕ a4 ⊕ a0 = 0
11111 a0 ⊕ a1 ⊕ a2 ⊕ a3 ⊕ a4 = 1

Strategies and equilibria

Each player follows a local strategy to produce their answer

In general, they may also have access to a shared correlation in the form of an advice
si provided by a mediator with probability C(s1 . . . sn|r1 . . . rn)
A solution (set of strategies for each player, defined by functions fi and gi) induces a
distribution

P (a|t) =
∑
λ

Λ(λ)
∑

s : ∀i, gi(ti,si,λi)=ai

C(s1 . . . sn|f (t1, λ1) . . . f (tn, λn))

We can generally consider just deterministic strategies

A solution is a Nash equilibrium if no player can increase their mean payout by
changing their strategy: ∀i ∀ti, ri ∈ Ti ∀µi : Ti × Ai → Ai,∑

t−i,a−i

ui(a, t)P (a|t)Π(t) ≥
∑
t−i,a−i

ui(µi(ti, ai)a−i, t)P (a|rit−i)Π(t)

Nash equilibria play important roles in applications from economics to engineering
Different correlations C lead to different equilibria: Nash (no correlation), Corr
(shared randomness), B.I. (belief invariant, or no-signalling), . . .

The social welfare of a solution is

SW (P ) =
∑
a,t

U(a, t)P (a|t)Π(t), where U(a, t) =
1

n

∑
i

ui(a, t)

Two types of quantum strategies

Question: How can quantum resources lead to new equilibria or improve social welfare?

We identify two types of quantum strategy and equilibria:

Quantum correlated strategies: Advice C is obtained from measurements on a
quantum system:

C(s|r) = Tr
[
ρ(M

(1)
s1|r1 ⊗ · · · ⊗M

(n)
sn|rn)

]
Measurement delegated to mediator, or performed by parties with quantum
“black-boxes”

Quantum strategies [2]: Each player measures a shared quantum state to determine
their output ai

Direct access to quantum resource
Notion of equilibria modified: a player can deviate by choosing any other local

POVM: ∀i ∀ti ∀N (i) = {N (i)
ai|ri}ri∑

t−i,a

ui(a, t) Tr
(
ρ ·

⊗
j

M
(j)
aj|tj

)
Π(t) ≥

∑
t−i,a

ui(a, t) Tr
(
ρ ·

⊗
j ̸=i

M
(j)
aj|tj ⊗N

(i)
ai|ti

)
Π(t)

Quantum correlated strategy – Qcorr(G) Quantum strategy – Q(G)

For any game G, the sets of equilibria satisfy

Nash(G) ⊂ conv(Nash(G)) ⊂ Corr(G) ⊂ Q(G) ⊂ Qcorr(G) ⊂ B.I.(G) ⊂ Comm(G)

Results: Social welfare of different strategies

We optimised the social welfare over different strategy classes for three games:
NC00(C5), NC01(C5), and NC(C3) (not shown here) [1]

Best classical SW: computed exactly
Graph state SW: pseudo-telepathic equilibria using GHZ states [1]
Seesaw lower bound: numerical optimisation by iterating SDPs to find explicit
strategies lower-bounding QSW over Q(G)
NPA upper bound: SDP hierarchy providing dimension-independent upper
bound on equilibria in Qcorr(G) [3, 4]
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Conclusions and open questions

Two different ways to use quantum resources lead to distinct classes of equilibria

Numerical evidence of strict separation between Q(G) and Qcorr(G), but analytic
proof still to be found

Quantum social welfare can be improved beyond pseudo-telepathic strategies

Methods to directly obtain upper bounds on Q(G) and lower bounds on Qcorr(G)?
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