Kochen and Specker’s view on functional relations conflicts with the
collapse postulate

Alisson Tezzin (alisson.tezzin@usp.br)

Introduction

A key ingredient of the Kochen-Specker theorem is
the so-called tunctional composition principle, which
asserts that hidden states must ascribe values to ob-
servables in a way that is consistent with all func-
tional relations between them. This principle is mo-
tivated by the assumption that, like functions of ob-
servables in classical mechanics, a function g(A) of
an observable A in quantum theory is simply a log-
ically possible observable derived from A, and that
measuring g(A) consists in measuring A and post-
processing the resulting value via g. As Kochen and
Specker put it, “the measurement of a function g(A)
of an observable A is independent of the theory con-
sidered — one merely writes g(a) for the value of
g(A) if ac is the measured value of A”. Shortly speak-
ing, we can say that, according to this view, g(A) is
“a post-processing of A via ¢”.

Functional relations and the
collapse postulate

If g(A) represents an experimental post-processing
of A via g, then the measurement event (5, g(A)),
representing the experimental situation in which a
measurement of g(A) returns the outcome [ &
o(g(A)), has to be equivalent (in every possible way)
to the measurement event (¢~1(3), A), according to
which A has been measured and some outcome ly-
ing in g~ (/) (unknown to the experimentalist) has
been obtained. We see the following conditions as
individually necessary and conjointly sufficient for

the equivalence between (3, g(A)) and (¢g~1(5), A)

in quantum theory:

[.(8,g(A)) and (g~ '(B), A) are equally probable

with respect to all states
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[1.(8,g(A)) and (g~ (3), A) update every state in

precisely the same way.

As Kochen and Specker point out [1], it is easy to
see that item I is satisfied by quantum theory. To
analyse item 11, we need to understand how the event
(g71(B), A) updates the state of the system. In our
work, we consider the following definition:
Definition 1 (Collapse postulate including
subjective events): Let A be any observable
(selfadjoint operator) in a finite-dimensional Hilbert
space H. When a measurement event (A, A) oc-
curs, that is to say, when a measurement of A vyields
an outcome lying in A C o(A) (unknown to the ex-
perimentalist), the state p of the system is updated
to
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where FE, 1s the projection onto the subspace

pA =

spanned by the eigenvalue o of A and Exn =
2 e Eoz-

It is easy to see that, according to this definition,
(83,g(A)) and (¢~(5), A) do not necessarily update
a state p in the same way, which leads us to the
following theorem about quantum theory:
Theorem 1 The following statements about quan-
tum theory cannot be simultaneously true.

(a) The standard collapse postulate (see, for instance,

Ref. [2]|) is correct.

(b) The collapse postulate including subjective events

(definition 1) is correct.

(¢) A function g(A) of an observable A is the

theoretical representation of an experimental
post-processing of A via ¢

Discussion

In our work, we argue that the most reasonable way
of avoiding theorem 1 consists in renouncing the
standard collapse postulate. As we see it, the update
must depend on a particular choice of “measurement
basis” or “measurement context’:

Definition 2 (context-dependent collapse)
Let A be a selfadjoint operator in a n-dimensional
Hilbert space H, and let B = {E;}", be a mea-
surement basis for A, that is to say, B is a set of
rank-one pairwise orthogonal projections satisfying,
for any 2 € {1,...,n}, B;A = ayFE; = AE;, where
0(A) =A{a; : 1 =1,...,n} is the spectrum of A.
If a measurement of A in the basis *B yields an out-
come « of A, the state p of the system is updated
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Based on this definition, we discuss the following

points.

e There is more than one measurement basis (or
measurement context) for an observable A if and
only if A is degenerate, i.e., iff A has at least
one degenerate eigenvalue (we say that A is
nondegenerate otherwise). This is equivalent to
saying that A can be written as a function
A = g(B) = h(C') of noncommuting observables
B, C', which in turn is precisely the reason why
noncontextual hidden variable models for
quantum systems are ruled out by
Kochen-Specker theorem |3, 1|. Hence, the

dependence on contexts which follows from

definition 2 is in agreement with the context
dependence which arises from Kochen-Specker
theorem

e Degenerate observables can always be seen as
coarse-grainings of nondegenerate ones, which

means that, if B is a degenerate observable, then
there is a nondegenerate observable A and a
(necessarily) non-injective function

g:0(A)— o(B) such that B = g(A). The
distinction between degenerate and
nondegenerate observables resembles the
distinction between mixed and pure states

e The multiplicity of measurement bases for a
degenerate observable is similar to the variety of
convex decompositions of a mixed state, and the
fact that a nondegenerate observable has a unique
basis is comparable to the unique convex
decomposition of a pure state. In Spekkens’
contextuality 4], distinct convex combinations of
a mixed state p are associated with distinct
preparation procedures for p [4|, and, as we argue
in the paper, distinct measurement bases for a

degenerate observable A are associated with

distinct measurement procedures for A. Thus, the

dependence on contexts that appears in definition
2 resembles Spekkens’ notion of contextuality:.

e With respect to the same measurement basis, the
events (53, g(A)) and (g7 1(B), A) are equivalent,
i.e., they satisfy items [ and [ introduced above.
Therefore, definition 2 allows us to avoid theorem
1 without rejecting Kochen and Specker’s view on
functional relations.
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