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Problem Statement

Quantitative Information Flow (QIF) is an area of research that aims to quantify
how much confidential information systems leak, and to reduce this leakage. One
of the most successful frameworks in the field is the g-leakage framework [1],
which measures the information systems leak by assigning to it a quantity called
g-vulnerability, which is predicated on the adversary’s knowledge about the sen-
sitive information and how much he expects to gain from this knowledge.

In this work, published in [2], we extend the g-vulnerability framework to a quan-
tum setting. We consider quantum systems that have classical secrets, and we
also adapt the quantum Blackwell-Sherman-Stein (BSS) theorem [3] — which, in
its classical version, is a fundamental result for QIF — to our framework.

Classical QIF and g-vulnerabilities

Model: a secret is a random variable (r.v.) X taking values on a finite, nonempty
set X = {x1, . . . , xn}, according to some probability distribution pX, which the
adversary is aware of. A system takes as input the secret X, and produces an
observable Y, a r.v. taking values on Y = {y1, . . . , ym}. The system is modelled as
a channel K , which is a matrix that, for each x ∈ X , y ∈ Y , gives the conditional
probability K(y|x) of Y = y given that X = x. With the realisation of the observ-
able Y = y, an adversary updates the knowledge he has about the secret from
the initial distribution pX to pX|y by Bayesian updating pX|y(x) = p(x)K(y|x)∑

x p(x)K(y|x).

K y1 y2 y3 y4

x1 1/2 1/3 1/6 0

x2 1/4 1/4 1/4 1/4

x3 1/2 0 1/2 0

−→

pX|y1
pX|y2

pX|y1
pX|y1

x1 3/5 2/3 1/3 0

x2 1/5 1/3 1/3 1

x3 1/5 0 1/3 0

Figure 1. A channel K, and posterior distributions obtained from K and pX = (1/2, 1/3, 1/6)

g-Vulnerabilities: A gain function is a function g : W×X → R such that g(w, x)
is the value of the gain the adversary when he chooses action w ∈ W and the
secret value is x ∈ X . The g-vulnerability of the secret before the execution
of the system is given by the expected gain of the adversary if he chooses the
optimal action

Vg(X) = max
w

∑
x

pX(x)g(w, x). (1)

Similarly, the posterior g-vulnerability is given by the expected value of the g-
vulnerability after the execution of the system

Vg(pX, K) =
∑

y
pY(y)Vg(pX|y) =

∑
y

max
w

∑
x

pX(x)K(y|x)g(w, x). (2)

The quantity of information leakage can then be defined as the increase in g-
vulnerability by the execution of the system.

The Blackwell-Sherman-Stein Theorem

The choice of gain function g often reflects the abilities and interests of the ad-
versary. For example, g(w, x) = δw,x models an adversary interested in guessing
the secret exactly in one try, whereas g(w, x) = d(w, x) for some suitable distance
function might represents an adversary aiming to obtain an approximation of the
secret.

▶ This raises the question: when can we guarantee a system is more secure than
another for all adversaries?

In [4], McIver et al answered this question by proving an important theorem for
QIF, which was later discovered to be equivalent to the BSS Theorem [5].

The Blackwell-Sherman-Stein Theorem: Let K1 : X → Y and K2 : X → Z be
channels. We have that ∀px, ∀g Vg(pX, K1) ≥ Vg(pX, K2) if, and only if, there is a
channel R : Y → Z such that

∀x, z K2(z|x) =
∑

y
K1(y|x)R(z|y).

That is, a channel K2 leaks at most as much information as channel K1 for all gain
functions g if, and only if, K2 can be obtained by postprocessing the outputs of K1
by another channel R.
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Quantum QIF

The g-leakage framework provides us with a natural way of extending QIF to a
quantum setting. In this which the secret is still classical, modelled by a r.v. X
taking values on a set X = {x1, . . . , xn}. However here the system takes a secret
value x ∈ X as input and performs a computation, producing a quantum state ρx.
Thus, a system can be represented as a collection of states ρX = {ρx}x∈X indexed
by X , that are density operators on some Hilbert space H .

An adversary then makes a measurement on ρx, selecting a POVM E = {Ey}y∈Y
from a set of “allowed” POVMs P .. Notice that each POVM is indexed by a (finite,
nonempty) set Y = {y1, . . . , ym}, which is akin to the output set in classical QIF.

This construction is similar to Quantum Statistical Models in [3], but in this work
we limit the set of feasible POVMs, as a way to modelling possible attackers.

Quantifying Information in QQIF

The quantification of information in QQIF is similar to the classical case. The
adversary again has some prior knowledge about the secret, modelled by a prob-
ability distribution pX, and a set of possible actions W . The prior g-vulnerability
in the quantum case is then the same as in the classical case, i.e. (1).

After the execution of the system, the attacker chooses a POVM {Ey}y∈Y to per-
form a measurement on the resulting quantum state, and then chooses the action
w ∈ W that maximises his gain. The quantum posterior g-vulnerability is thus

Vg,P(pX, ρX ) = max
E∈P

∑
y∈Y

max
w∈W

∑
x∈X

p(x)g(w, x)tr(ρxEy). (3)

Notice that one can easily recover the classical case, in which a system is modelled
by a channel K : X → Y , from the quantum setting. This can be done by letting
{|y⟩}y∈Y be an orthonormal basis of H , defining the quantum states as ρx

K =∑
y K(y|x) |y⟩ ⟨y|, and letting the set of allowed POVMs to be the singleton P =

{E}, where Ey = |y⟩ ⟨y|. In this case, (3) reduces to (2).

The Quantum Blackwell-Sherman-Stein Theorem for QQIF

A QSM is a triple R = (X , H , ρX ), where H is a Hilbert space and X , ρX are
a collection of states ρX = {ρx}x∈X indexed by X in H . Given a QSM R, an
action set W and a gain function g, we define the maximum expected payoff as

$g(R) = max
E

1
|X |

∑
x∈X

∑
w∈W

g(w, x)tr(ρxEw),

the maximum being taken over all possible POVMs indexed by elements in W .

As in the classical case, there is a strict connection between the maximum ex-
pected payoff and the posterior g-vulnerability.

Proposition: Let R = (X , H , ρX ) be a QSM, W an action set and g a gain
function. Let pu be the uniform distribution, and P be all POVMs in H . Then,

$g(R) = Vg,P(pu, ρX ).

In [3], Buscemi proved a quantum version of the BSS Theorem. The role that
postprocessing plays in the classical version is performed by statistical mor-
phisms, which are linear maps that include completely positive trace-preserving
maps.

Definition: Let G(H ) be the set of density operators in H , and L(H ) the set of
linear operators in H .. A family {Fw}w∈W of operators over H is called a W-test
on a subset G ⊂ G(H ) if there is a POVM E = {Ew}w∈W indexed by W such
that for all w ∈ W , ρ ∈ G, we have tr(ρFw) = tr(ρEw).

Definition: Let G ⊂ G(H ), G ′ ⊂ G(H ′). A linear map L : L(H ) → L(H ′)
induces a statistical morphism L : G → G ′ if 1) for all ρ ∈ G, L(ρ) ∈ G ′, and
2) the dual transformation L∗ : L(H ′) → L(H ) defined by trace duality maps
W-tests on G ′ to W-tests in G.

Given a collection of states ρX , let G(ρX ) = {ρx | x ∈ X}. The proposition
above allows us to give Buscemi’s results in terms of the QQIF Framework:

The Quantum Blackwell-Sherman-Stein Theorem [3]: Let P be the set of all
possible POVMs. Then, there is a statistical morphism L : G(ρX ) → G(σX ) such
that ∀x ∈ X , L(ρx) = σx if, and only if, for all gain functions g and all pX,

Vg,P(pX, ρX ) ≥ Vg,P(pX, σX ).
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