
Undecidability in resource theory: Can you tell theories apart?

RESOURCE THEORY

Matteo Scandi and  Jacopo Surace

ρ

=

σ

UNDECIDABILITY

A quantum resource theory describes the possibility of action of an 
agent whose capabilities are constrained to a set of quantum channels. 

Example: Two agents (Alice and Bob) work in far-away labs. They share an 
entangled state, and they can communicate classically over the phone. 
What transformations can they achieve? 

This question is at the center of the resource theory of LOCC (Local 
Operations and Classical Communication).

The allowed channels are called free operations. This set is closed under 
composition (performing two allowed channels sequentially is allowed) 
and contains the identity channel (doing nothing is allowed). Hence, 
mathematically the free operations are a semigroup (with identity) of 
CPTP maps (Completely Positive and Trace Preserving).

Free operations are not the only part of the theory. One is mostly 
interested in what transformations are possible given an initial 
resourceful state. Oneresourceful state. One says that the transition  is allowed if there 
exists a free operation between the two.

ρ → σ

Example: In the theory of LOCC it is possible to teleport a quantum state 
from Alice to Bob. Anyways, this is only possible if at the beginning of the 
protocol they also share an entangled state.

We depict free operations 
a s a r ro w s . T h e b o x 
around them indicates the 
corresponding semigroup.

Free
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One can associate to 
eacheach state  a directed 
graph, showing all the 
possible transitions. 
This structure is the 
central object studied 
by resource theory.

ρ

Example: In the theory of LOCC the resource that one wants to quantify is 
entanglement. All kind of measure have been introduced (concurrence, 
robustness, etc.) but no complete set has been found.

In order to quantify how resourceful a state is, one introduces the 
concept of monotone functions:

These are non-increasing under the free operations. A set of monotones 
is called complete if it entirely characterizes the possible transitions.

f : states → ℝ | f(ρ) ≥ f(σ)ρ → σ ⟹

Vertices in loops 
are identified.

States are the vertices of the graph.

In 1937 Alan Turing publishes the paper 
“On Computable Numbers, with an 
Application to the Entscheidungsproblem”. 
In there the idea of computation is 
formalised, and it is shown that there exist 
an algorithm able to simulate any other 
algorithm (the Universal Turing Machine). 
Finally, he discovered that there are some 
decision problems that cannot be 
answered by any algorithm in finite time. 
The most famous example for this is the 
halting problem.

This result shows that there are some problems for which a general answer 
cannot be constructed. It is important to point out that undecidability is not 
just a feature of computer programs: there are a wide range of problems 
showing this feature, ranging from classical dynamical systems to matrix 
multiplication, from polynomials to cellular automata. 

Undecidability is usually proven by reduction of the halting problem. This 
consists in two steps: first, one shows that the system in consideration 
can simulate any computation; second, it is shown that certifying some 
feature of the system is equivalent to decide the halting of the 
corresponding algorithm.

In order to solve the halting problem one has to construct an algorithm that 
takes as input the description of any other algorithm, and as output it tells 
whether the computation will terminate or not.

The halting problem

H The algorithm 
halts?

Surpr is ingly, 
this algorithm 
cannot exist.
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Given an arbitrary set of dominoes, one says that there is a matching if 
they can be rearranged with repetition so that the same string appears on 
the top and the bottom row.

The Post correspondence problem

⟹

Match ✓

Post showed that any computation can be simulated through matching of 
dominoes. For this reason, deciding whether there is a matching is 
equivalent to deciding whether an algorithm halts. Hence the matching of 
dominoes is undecidable in general.

MAIN THEOREM

The membership problem for CPTP semigroups is undecidable

COROLLARIES

The reachability problem for CPTP semigroups is undecidable

Saying whether two CPTP semigroups induce the same 
transitions (or contain the same maps) is undecidable

There is no general algorithm to associate to a CPTP 
semigroup the corresponding complete set of monotones

Given a set of free operations and a given channel is it possible 
to decide whether the latter can be generated just by composing 
elements from the first? This is called the membership problem. 
It is particularly relevant for applications: once this issue is 
settled, one can start constructing an explicit realization, or give 
up completely on the task. Unfortunately, this is not possible:

This theorem is proven by reduction of the Post correspondence 
problem and subsumes all the other results. Whereas the main 
theorem is relevant by itself, it is not strictly referring to resource 
theories. In fact, arguably the most important information about a 
resource theory is contained in the allowed transitions.

Consider the problem of deciding whether the transition  
can be constructed out of free operations. This goes under the 
name of reachability problem. Even in this case, there is no 
algorithm that can solve this problem in general:

ρ → σ

Another relevant issue is the one of comparing the capabilities of 
two different resource theories. In particular, a subset of this 
question is whether two resource theories are the same or not. 
This is also not possible to decide:

Finally, can one generically construct a complete set of 
monotones? This is relevant when one wants to assess the value 
of a state, but, again, it is shown that:
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