Quantum metrology of indefinite causal order strategies

Raphaël Mothe1,2,3, Cyril Branciard1, Alastair A. Abbott1

1Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
2Département de Physique, Ecole Normale Superieure de Lyon, 69007 Lyon, France
3Univ. Grenoble Alpes, Inria, 38000 Grenoble, France

Abstract

- Quantum mechanics allows different causal orders to be superposed, leading to a genuinely quantum lack of causal structure. For example, the process known as the quantum switch (QS) consists in the superposition of applying two operations A and B in their two possible orders, A after B and B after A.
- An advantage of such processes with indefinite causal order has been claimed in quantum metrology [1], solely on the grounds of a comparison between the QS and the sequential strategy. We first argue that such a claim does not hold.
- Using a framework introduced in [2,3], we then address the question of the comparison between processes with definite and indefinite causal order in quantum metrology.
- By introducing new sets of strategies, we extend a hierarchy found in [3]. We also show that the set of quantum circuits with quantum control of the causal order strictly outperforms any set with physically realizable strategies so far considered.

Quantum metrology

\[\rho \xrightarrow{C_\theta} \rho \theta \]

FIG. 1: A quantum channel \(C_\theta \) that depends on an unknown parameter \(\theta \), with an input (resp. output) state \(\rho \) (resp. \(\rho_\theta \)). The objective is to gain some information about \(\theta \) by measuring the output state.

- The quantum Fisher information (QFI) of the output state \(\rho_\theta \) with respect to the unknown parameter \(\theta \) can be computed as:
 \[J(\rho_\theta) = 4 \min_{(i_0,i_1)} \sum_i \text{Tr} \left(|\psi_{i_0}(\theta)\rangle \langle \psi_{i_1}(\theta)| \right), \]
 (1)
 where \(|\psi_{i_0}(\theta)\rangle \) is a set of unnormalized vectors such that \(\rho_\theta = \sum_i |\psi_{i_0}(\theta)\rangle \langle \psi_{i_1}(\theta)| \).
- The QS and the sequential strategy (Seq) were compared in [1], for \(N = 2 \) depolarizing channels: \(C_\theta(\rho) = (1-\theta) \text{Tr}(\rho_\theta^2) + \theta \rho \).

\[\rho \xrightarrow{C_{\theta}} \rho \theta \xrightarrow{C_\theta} \rho \theta \]

FIG. 2: Three strategies for \(N = 2 \) copies of the quantum channel \(C_\theta \). (a) The QS strategy. The red (resp. blue) path corresponds to the evolution of the target system \(S \) when the control qubit \(C \) is in the state \(|0\rangle \) (resp. \(|1\rangle \)). (b) The sequential strategy. (c) A parallel strategy with initial entanglement (ParallelEnt), where \(|\psi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \).

- On the grounds that \(J_{\text{Seq}}(\rho_\theta) > J_{\text{Ent}}(\rho_\theta), \forall \theta \in [0,1] \), [1] claimed that “indefinite causal order is an aid for channel probing”. Such a claim requires more general comparison between strategies with and without a definite causal order, since for instance we could show that \(J_{\text{Ent}}(\rho_\theta) > J_{\text{Seq}}(\rho_\theta), \forall \theta \in [0,1] \).
- What is the best strategy with (in)definite causal order?

A metrological task

Given \(N \) queries to a quantum channel \(C_\theta \) that depends on an unknown parameter \(\theta \), what is the strategy with (in)definite causal order that maximizes the QFI of the output state \(\rho_\theta \)?

\[\rho \xrightarrow{C_{\theta}} \rho \theta \xrightarrow{C_{\theta}} \rho \theta \]

FIG. 3: Framework defining the metrological task for \(N = 1 \) queries to \(C_\theta \). Starting with an initial state \(\rho \), the strategy is connecting the \(N \) quantum channels \(C_\theta \) in a (in)definite causal order in order to output the state \(\rho_\theta \).

References