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Motivation

Connecting causal explanation to correlations is central to science and gives interesting

insights of our theories. The theoretical existence of closed time-like curves (CTCs),

curves that allow a particle to return to its starting point in space-time, as solutions

in General Relativity seem to imply that time travel backwards in time is theoretically

possible. The description and characterisation of CTCs from a causal point of view

requires the introduction of cyclic causal models. These models do not only describe

CTCs that may arise in exotic solutions of General Relativity, but also can be used to

model ordinary feedback processes [1].
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Figure 1: Grand-father paradox arising in CTCs and a double pendulum, physical process.

Classical causal models

Classical causal modelling [2] makes use of directed graphs to de-

scribe causal relations. Nodes of the graph represent variables, while

edges represent direct causation expressed by a functional model

fi(Pa(Xi), Ai) = Xi, where Pa(Xi) := {Xj|Xj → Xi} and Ai are par-

entless variables.

Definition: The model is uniquely solvable if #sol({ai}i) = 1 ∀{ai}i.

Definition: A probability distribution P is said to be Markov relative

to a graph G if P (x1, . . . , xn) =
∏

i P (xi|pa(xi)).

Classical causal modelling only provides probability distribution for

cyclic classical casual structures that are uniquely solvable [1, 3]

X1

A1

X2

A2

X3

A3

Figure 2: Example of
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In the quantum case, a recent framework for quantum cyclic causal

models has been proposed [4]. The nodes correspond to local lab-

oratories of agents where they may perform quantum operations,

while the edges denote quantum channels connecting different lab-

oratories. This framework considers only cyclic causal models that

remain non-paradoxical for all possible choices of local operations

plugged in at the nodes and for them provides a probability distribu-

tion.

These are so-called process matrices [5] which are known to corre-

spond to a linear subset of more general CTCs [6].

Aim

We formulate a diagram semantics that allows to model cyclic causal structures as

acyclic ones with post-selection. This framework can consistently describe quantum

cyclic causal models determining the existence or not of a logically consistent solu-

tions and eventually provide a way to evaluate probability distributions.

This framework provides new insights on cyclic causal models and reproduces the

known results as special cases.

The framework

The building blocks of our notation are a collection

of diagrams, where each carries a finite set and

each a Hilbert space. Each diagram represents

a collection of completely positive linear maps from

linear operators acting on the tensor product of in-

put Hilbert spaces to linear operators acting on the

tensor product of output Hilbert space, satisfying:
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is trace-preserving.

We can denote post selection on the outcome y of

a channel M as a My box. Here represents

marginalisation and performing the partial trace.
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Causal model

A causal model on a directed graph G = (V, E) is specified by the following items:

(i) a Hilbert space H(e) associated to each edge e ∈ E;
(ii) a finite set of settings A(v) and a finite set of outcomes X (v) associated to each
vertex v ∈ V ;

(iii) a completely positive linear map

E (v)

a

x

···

···

: L
( ⊗

e∈In(v) H(e)
)

→ L
( ⊗

e∈Out(v) H(e)
)

associated to each vertex v ∈ V , outcome x ∈ X (v) and setting a ∈ A(v), that
satisfies the normalisation condition.

Probability distribution

Given a causal model on a directed graph G = (V, E), we define:
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where:

• Etot is defined as:

Etot

···

···

···

···

=
⊗

v∈V E (v)

···

···

;

• V is an isometry which reduces the set of output

edges, where each edge carries a Hilbert space,

to a single carrying the tensor product of the

Hilbert spaces;

• Uσ is a permutation of the edges which reorders

the output edges in the order of input edges.

Explicitly:

P (x1, . . . , xn|a1, . . . , an) = 〈Φ+| (V ⊗ IB′)(Etot ⊗ I ′
B)

[
(UσV † ⊗ IB′) |Φ+〉〈Φ+|

]
|Φ+〉

N

Results

• The framework can be specialised to describe classical functional causal models. The

probability distribution can be expressed in terms of the distribution of an acyclic model

where the number of variables are doubled (Pse):

P (x1, . . . , xn|a1, . . . , an) =
∑

{yj}j
Pse(x1, . . . , xn|y1, . . . , yn; a1, . . . , an)

∏
i δyi,xi∑

{xj}j,{yj}j
Pse(x1, . . . , xn|y1, . . . , yn; a1, . . . , an)

∏
i δyi,xi
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Figure 4: Interpretation of the classical probability distribution with a two-node example.

• In the classical case, it provides a characterisation of models where the Markov con-
dition holds:

Definition: A model is averagely unique solvable (AUS) if 〈#sol(Ai)〉P =
Σ{ai}i

P (ai)#sol(ai) = 1.

Given a causal model, eq (1) admits a Markov factorisation ⇐⇒ the model is AUS.

•We discuss composability with two different methods of describing input variables.

•Weprove explicitly the equivalence between the post-selected teleportation protocol
and loop composition defined in the causal box framework [7].

• We formulate a generalisation of the d-separation theorem [2, 8] to quantum cyclic

causal models.

Outlook

Our framework provides a method to uniquely determine probability distributions of

arbitrary classical and quantum cyclic causal models, generalising previously known

approaches for quantum cyclic causal models [4, 9]. It connects quantum cyclic causal

models to quantum acyclic causal models with post-selection allowing to directly gen-

eralise results from the acyclic case to the cyclic one through this correspondence.

It is formulated rather operationally in terms of composition of operations and post-

selection, and has the scope to be generalised in a more theory independent manner

to post-quantum operational theories (i.e. to any physical theory that has an ana-

logue of post-selected teleportation).
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