No state-independent contextuality from state-dependent contextual MBQC in odd prime dimension
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Linear constraint systems (LCS)

A linear constraint system (LCS) over Z, is a set of linear equations ‘Az = b mod d, where
A € Myxn(Zg), b € Z7'. A classical solution is a vector x = (z1)}_, € Z} such that Az = b
mod d. A quantum solution is a set of unitary operators (z)7_,, 7. € U(C?) such that

= d-torsion: z¢ =1

= commutativity: [z, 7] = zrzpr, ;' = 1 whenever A, # 0 # Ajp for some
€m]:={1,--- ,m}

= constraint satisfaction: [],_; x‘,jj’“ — whil forall j € [m] and w = €7,

Background

Measurement-based quantum computation (MBQC)

A deterministic, non-adaptive ld-MBQC is given by the following data:

= resource state: |¢)) € (CH)Y (e.g. the N-qudit GHZ-state [¢)) = \[Z o )N

= local measurement operators: M, € U(C?) with eigenvalues d-th roots of unity
Z = {w" | a € Zg}; consequently, M¢ = 1 for all k € [N] (d-torsion)

= measurement settings: M, = M (ly), where [, : Z) — Z, is a Zg-linear function of the
input vectori € Zj

= output: The output Z,; > 0 = fozl my. mod d is the sum of local measurement outcomes.
For deterministic (non-adaptive, Id-) MBQC, the output defines a function o : Zl) — Zj.
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Figure 1. The schematic setup of Id-MBQC [2].

Background

LCS from MBQC

We associate to any deterministic (non-adaptive id-) MBQC a LCS 'Ly = 0 mod d, where
L= (Lip)iriezy = (L), In(D) € Maxn(Za), N =d"i€Z

is the matrix of measurement settings and o : Z" — Zg4, equivalently o € ZY, is the output of the
MBQC. Note: hidden variable model of MBQC +— classical solution of associated LCS

Does a contextual MBQC give rise to a quantum solution of its associated LCS?
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Contextuality in MBQC
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(a) Mermin’s star. (b) MBQC and associated LCS.

Figure 2. Qubit Pauli operators in Mermin’s star [4] (tensor products and identity operators omitted).

Note: [1(i) = i1, [5(i) = i, I3(1) = i1 + 42 mod 2 are Zy-linear, yet o(i) = 4119 + i1 + i3 mod 2 is
the nonlinear (and universal for classical computation) OR-gate [1]

= nonlinearity of o : Z} — Z is a witness of contextuality in deterministic /2-MBQC [¢]
= contextuality boosts the classical computer beyond Z,-linear side-processing

The above example generalises to arbitrary prime dimension d. We write d = p for p prime.

Theorem 1

Let |¢) = % Zg;é 1)®Y, for N = 3 and p prime. The Ip-MBQC with local measurements
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Mi(ly) = Sé’;Xk, Eeqr) = exp <lkp—(1 +plgr — 1) )) Vg, Ik, € Zy ,

set by Z,-linear functions l;(i) = 1, l2(i) = 49, and l3(i) = —i; — i mod p on the input
i = (i1,i2)" € Z is contextual, i.e., it admits no noncontextual hidden variable model.

Remarks

= more generally, local measurement operators in Eq. (1) are universal for contextual MQBC:
any output function o : Z} — Z4 can be computed from these operators [3]

= the operators in Eq. (1) are generally not Pauli operators

Pauli group, Heisenberg-Weyl group, and (diagonal) Clifford hierarchy

We denote by PC?N the N-qudit Pauli group, where P! = (X, Z, 1) is generated by the
generalised Pauli-X and -Z operators defined by (their action on the computational basis
{lg) }=o)

Xlg)=lg+1 modd)  Zlq) =uwlq) Vqe€Zq,

2mi

and 7 = w = e¢ for d odd, whereas 7 = y/w for d even. For d odd, P} =
H(Zq) = ( “bZ“Xb | a,b € Zy) is the discrete Heisenberg-Weyl group.

The diagonal Clifford hierarchy is defined recursively from Ci(d) == {S¢ | £(q) = €W’ ¢ €
0,27, 8 € Z4}, and Cps(d) = {S = diag(£(0), - ,£(d — 1)) € U(d) | XSeX~* C Cu(d)}].

We also define SCy(d) := Cr(d) N SU(d). Note that SC1(d) = {S¢ | £(q) = w* TP, , B € Zg}.

H(Z,), where

Background

Group of measurement operators

The operators in the Heisenberg-Weyl group H(Z,) generalise to (local measurement) operators
M(€,b) = SeX’ Selq) = &(q)lg) Vg € Za (1)

where ¢ : Zy — U(1). The d-torsion condition for M (&,b # 0) becomes Hfll;é
lently Sg € T for a maximal torus of the special unitary group SU(d),

T = T(SU(d)) = {S¢ = diag(¢(0), - ,&(d — 1)) € SUd) | € : Zy — U(1)} .

Definition: Let Q C SCi(d) C T for some k € N, closed under translations t : Z; — Aut(Q),
t.S¢ = XS XL We define Kg(d) == (M(&,b) == S X" | S¢ € Q,b € Zg) C SU(d).
We write KSN(d) = @1_(Kg(d))x for the N-fold tensor product of Kg(d).

£(q) = 1, equiva-

Reduction to Heisenberg-Weyl group

Recall: measurements operators in MBQC only commute on the common eigenstate |¢)!
problem: When do elements in KSN(p) commute?

Lemma: Let M, M" € Kq(p) for p prime. Then [M, M'] = w*, ¢ € Z, if and only if either

() M, M'" e Q, or
(i) either M € Q(H(Z,))
(i) M' =

= 8C1(p) or M' € Q(H(Zp)) = SCl(p), or
(WM)Y for W € Q(H(Z,)) = SCi(p) and y € Z,,.

The close relationship between abelian subgroups in K(p) and H®(Z,) gives rise to a map
O KSN(p)p — H®N(Z,)—a homomorphism in abelian subgroups of order p in KSN(p).

Theorem 2

Let Ly = 0 mod p be a LCS over Z, for p odd prime. Then the LCS admits
a quantum solution in KSN(p) C SU(p) with @ C SCi(p) for some k € N
if and only if it admits a classical solution.

Sketch of proof: ¢ preserves the constraints of the LCS
(i) d-torsion: ¢?(M) = ¢(M?P) = ¢(1) = 1. (Every operator P € H*N(Z,) has order p.)
(i) commutativity: (M M') = ¢(M)p(M') whenever [M, M'] = 1.
(iii) constraint satisfaction: let { M }ies, M} € KS’N(p) be a set of pairwise commuting
operators and w® = [[,c; My, then ¢(TTe; M) = [Ties My = 0¥ = ¢(w®).

Hence, ¢ maps (classical/quantum) solutions of the LCS Ly = 0 mod p in KS’N(p) to
(classical/quantum) solutions in H®Y(Z,); by [5], the latter are classical.

References

[1] Janet Anders and Dan E. Browne. Computational Power of Correlations. Physical Review Letters, 102(5):050502, February 2009.

[2] Markus Frembs, Sam Roberts, and Stephen D. Bartlett. Contextuality as a resource for measurement-based quantum computation
beyond qubits. New Journal of Physics, 20(10):103011, October 2018.

[3] Markus Frembs, Sam Roberts, Earl T. Campbell, and Stephen D. Bartlett. Hierarchies of resources for measurement-based quantum
computation. ArXiv e-prints, March 2022.

[4] N. David Mermin. Hidden variables and the two theorems of John Bell. Rev. Mod. Phys., 65:803-815, July 1993.

[5] Hammam Qassim and Joel J Wallman. Classical vs quantum satisfiability in linear constraint systems modulo an integer. Journal of
Physics A: Mathematical and Theoretical, 53(38):385304, August 2020.

[6] Robert Raussendorf. Contextuality in measurement-based quantum computation. Physical Review A, 88(2):022322, August 2013.

QPL 2022, Oxford



mailto:m.frembs@griffith.edu.au

