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Abstract

Causal identification is a type of causal inference problem concerned with recovering from observa-
tional data and qualitative assumptions the causal relationships generating the data, and hence the effects
of hypothetical interventions. Though the topic is typically considered in the context of classical statisti-
cal models, recent years have seen great interest in extending causal inference techniques to quantum and
generalised theories. A major obstacle to a theory of causal identification in the quantum setting is the
question of what should play the role of “observational data,” as any means of extracting data at a certain
locus will almost certainly disturb the system. Hence, one might think a priori that quantum measure-
ments are already too much like interventions, so that the problem of causal identification trivialises. This
is not the case. Fixing a limited class of quantum instruments (namely the class of all projective mea-
surements) to play the role of “observations,” we note that as in the classical setting, there exist scenarios
for which causal identification is not possible. We then present sufficient conditions for quantum causal
identification, starting with an example of a quantum analogue of the well-known “front-door criterion”
and finishing with a broader class of scenarios for which the effect of a single intervention is identifiable.
These results arise from generalising the process-theoretic account of classical causal inference given by
Jacobs, Kissinger, and Zanasi beyond the setting of Markov categories, and thereby treating the classical
and quantum problems uniformly.

1 Introduction

The problem of causal inference is to deduce from statistical correlations among variables something about
the causal mechanisms responsible for those correlations, where a causal mechanism is a process that answers
interventional queries. Although the majority of the work in the field of causal inference has focused on
classical, statistical models, it is interesting to consider causal inference problems in the quantum setting as
well, where quantum systems play the role of classical random variables. One can ask, for example, whether
it is possible to deduce using only certain limited operations whether agents are in a common-cause type
setting (e.g., accessing two parts of a quantum entangled state) or a cause-effect type setting (e.g., accessing
the same system at two points in time). Ried et al. presented a solution to this inference problem for
specific scenarios involving two quantum systems, and asked how their scheme might generalize to scenarios
with more systems |Rie+15]. This article begins to answer that question, using the logical conception of
causality presented in [JKZ19| to reveal the common process-theoretic underpinnings of causal inference in
both ordinary stochastic and quantum settings.

A theory of quantum causal inference requires first a mathematical model of quantum causal scenarios.
Here, we will take a minimal notion of a quantum causal model consisting of a “circuit with holes,” i.e., a
directed acyclic string diagram where some wires have gaps in them allowing agents to apply local processes.
This can be seen as a second-order process, or comb [CDPO§|, which maps local non-deterministic processes
to probabilities.

This notion of causal model is relatively weak in that unlike the one studied in |All4+17] and [BLO20], it
doesn’t seem to admit a relation of “complete common cause” whereby a single, tensor-inseparable quantum



system can act as the sole source of correlations between two systems in its future. On the other hand, the
quantum interventional models studied here do correspond to the quantum causal models of [CS16|. Though
our definition of interventional causal model includes non-Markovian models, all the quantum combs falling
under our definition can be given larger Markovian explanations in the sense of |[CS16], and the quantum
models in our Propositions [5] and [3] explicitly depict all the latent laboratories needed for such Markovian
explanations. Our identification criteria can therefore be restated in terms of the directed acyclic graphs used
in more traditional presentations of both classical [Pea09] and quantum [CS16] causal modeling.

As complete common causes can be pictured in the classical setting as “copying” a random variable and
using it as input to two or more subsequent stochastic maps, it is difficult and somewhat subtle to make
sense of a “complete quantum common cause” in the absence of a physically meaningful process of cloning
or broadcasting quantum systems. Hence, it is interesting to see how much traction we can get on causal
inference for a class of models which don’t admit the explicit general representation of complete common
causes. We will show here that, in the case of the particular problem of quantum causal identifiability, we
can get relatively far without such a representation. We also recover, from an abstract perspective, theorems
in classical statistical causal inference.

Causal identification, in the classical case, refers to the problem of identifying the effects of (often hy-
pothetical) interventions on the basis of purely observational data [Pea09]. In contrast to related problems
such as causal discovery, here the hypothesised causal structure of events (e.g., the directed acyclic graph)—
reflecting assumptions that certain variables cannot possibly exert direct influence on certain others—is known
in advance, but not the exact conditional probability distributions (or functional dependencies) governing the
influence of individual variables on each other. Even with the causal structure given in advance, however, this
problem can be highly non-trivial in the presence of confounding variables [Pea09] or selection bias |[CTB19|.

In generalising to quantum causal identification, one needs to fix a notion that stands in the place of
“observation,” as it is impossible to extract any data from a quantum system without causing a disturbance,
which in some sense is already a type of intervention. Here, we fix the class of processes playing the role
of “observations” as local projective measurements, whereas “interventions” can be arbitrary quantum in-
struments. The latter includes, for example, the process of discarding the incoming state of a system and
preparing a fixed new state chosen by the agent, while the former does not.

While we do not intend to argue here that these notions of “observation” and “intervention” are fully
conceptually justified, we will give strong evidence instead that this kind of quantum causal identification
problem is interesting: we note that the problem can be hard in general, then give criteria under which it
becomes easy.

In the quantum just as in the classical case, there exist scenarios in which causal identification is impossi-
ble, i.e., in which there is a pair of models which behave identically with respect to projective measurements,
but whose behaviour differs under arbitrary interventions. Simple such pairs of models were mentioned in
[Rie+15].

Our first result is an illustration of a quantum version of the front-door criterion for causal identifiability
[Pea09]. This result is then generalised to a sufficient condition for identification that implies the quantum
analogues of multiple sufficient conditions in the statistical causal modeling literature, including the front-
door criterion and some cases covered by Galles and Pearl in [GP95] and by Tian and Pearl in [TP02|.
The statements and proofs here invoke diagrammatic technology presented in [CK17] and previously applied
to causal inference by Jacobs, Kissinger, and Zanasi [JKZ19|, who indicated the possibility, realized in the
present article, of “import[ing] results from classical causal reasoning to the quantum case” by changing the
concrete process theory in which abstract causal diagrams are modeled.

Consequences of the work are both practical and conceptual. Practically, the results here guarantee
that certain causal influences are identifiable in quantum networks of certain shapes, and describe how
to identify them. This paper thus initiates a quantum parallel of the systematic general study of causal
identification now codified in textbooks and routinely applied to the analysis of real data. As Ried et
al. explained, their inference schemes “promise extensive applications in experiments exhibiting quantum
effects.” [Rie+15] The schemes presented here might be similarly applicable, particularly to the problem
of detecting non-Markovianity in quantum information processing |[AKP06]. On the conceptual side, the
process-theoretic presentation here, yielding identification protocols formally identical to known classical
ones, illuminates the structures and procedures—comb factorization, bases, and process tomography—that
underpin causal inference regardless of whether the probability theory governing the variables is classical.



The isolation of these rudiments should not only help guide the further development of theories of causal
inference for quantum and other special kinds of processes, but also motivate continued research in ordinary
statistical causal modeling using the logical and compositional techniques of theoretical computer science.

2 Preliminaries

To treat classical and quantum theory on the same footing, we will use the language of process theories
throughout. Process theories have been defined in slightly varying ways in the literature. Here we will define
a process theory as follows.

Definition 1. A process theory is a symmetric monoidal category (C,®,I) equipped with a distinguished
family of discarding morphisms d4 : A — I for each object A satisfying dagp = da ® dp and d; = 1;.

To give a physical or computational interpretation to process theories, it is typical to refer to generic
morphisms f : A — B as processes, morphisms of the form p: I — A as states, and morphisms of the form
m: A — I as effects. Objects are also called system-types. Throughout the paper, we will adopt string
diagram notation, where processes are depicted as boxes and objects as wires. We depict discarding using a
black dot.

B p:l—A ~ d,%
f:A=B ~ da:A—T fA

A
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A

Note that we don’t require a priori that the discarding maps satisfy any equations aside from the basic
compatibility with ®. They play an important role, however, in identifying certain families of well-behaved
maps within a process theory. The most important such condition is the following.

Definition 2. A map f: A — B is called causal if dg o f = d 4, or diagrammatically:

Intuitively, causality captures the fact that the only influence a map can have is on its “future,” i.e., its
output. If the output is discarded, then the actual causal process that took place is irrelevant.

Our main examples of process theories are Mat[R] and CPM, which contain (finite-dimensional) clas-
sical probability theory and quantum theory, respectively.

Example 1. The process theory Mat[R ] has as objects natural numbers and as morphisms M : m — n
the n x m matrices whose entries are non-negative real numbers. The monoidal product is given by tensor
product of matrices (a.k.a. Kronecker product), whose unit is the 1 x 1 matrix (1) : 1 — 1. Discarding
maps d, : n — 1 are the 1 X n matrices (i.e. row vectors) consisting of all 1’s. Consequently, causal
states are column vectors of positive numbers whose entries sum to 1 (i.e., probability distributions), and
causal processes are matrices whose columns each sum to 1 (i.e., stochastic maps, equivalent to conditional
probability distributions with P(i|j) := M;;).

Example 2. The process theory CPM has as objects finite-dimensional Hilbert spaces H, /K, ... and as
morphisms completely positive maps ® : L(H) — L(K), where L(H) is the algebra of operators H — H.
The monoidal product is again given by tensor product, whose unit is the identity map on L(C) = C. States
p: C — L(H) are fixed by a single positive operator p(1) € L(H) and causal states correspond to trace-1
positive operators. More generally, causal processes are the trace-preserving completely positive maps.

We will furthermore find it convenient to assume that our process theory has a (self-dual) compact
structure, meaning that every object A is equipped with a pair of maps Uy : I > AQ Aand Ny : AQA — 1,



called “cups” and “caps” respectively, satisfying the so-called yanking equations, which are depicted in string

diagram notation as follows:

This structure enables us easily to represent higher-order maps as first order ones. For example, we
can represent a process that takes processes of type A — A’ and produces processes of type B — B’ as a
normal, first-order process f: B® A’ — A® B’. We then indicate its higher-order interpretation by drawing
f as a box with a “hole” in it, and use cups and caps to define “plugging” another box into that hole:

A |
~ (2) fl o= (3)
B |A

In [JKZ19], the authors furthermore assumed the structure of a CDU category—a minor variation on the
notion of a Markov category [Fri20]-which captures an abstract notion of probabilistic maps by assuming
every object carries a “copying” (a.k.a. “broadcasting”) map [CS12|. In particular, this allows one to capture
causal models based on Bayesian networks as certain functors between CDU categories.

The famous no-cloning/no-broadcasting theorems of quantum theory, however, rule out a Markov-like
structure in the category CPM of quantum maps. Hence, we adopt a weaker notion of causal model, con-
sisting of a formal string diagram (i.e., a morphism in the free category over a signature) and an interpretation
of that diagram into a concrete process theory (of, e.g., probabilistic or quantum maps).

3 Interventional causal models

A causal model consists of two parts: (i) a formal string diagram capturing our causal hypotheses, and (ii)
an associated interpretation in a concrete process theory (i.e., Mat[R,] or CPM).

We define a formal string diagram as a morphism of a particular form in the free symmetric monoidal
category Free(X) over some signature Y. For a fixed set of objects {X1,...,X,} in &, we call a diagram
D:X1®...X, > X1 ®...®0 X, a circuit with holes if it is a morphism in the free symmetric monoidal
category and furthermore has the property that joining each input X; to its corresponding output X; yields
another morphism in the free SMC (i.e., it doesn’t introduce a directed cycle).

The intuition is that each of the input/output pairs is a “hole” in the diagram, which we call an inter-
vention locus, or simply locus (plural loci), where a local process can be plugged in. For example:
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As do Barrett, Lorenz, and Oreshkov [BLO20|, we require a locus’s input and output system-types to be
identical in order to accommodate the special “trivial intervention,” which joins a locus’s input and output
with an identity wire.

We can now introduce a notion of causal model that is similar in spirit to that of [JKZ19], but no longer
relies on the CDU structure needed to capture Bayesian networks.



Definition 3. For any process theory C, an interventional causal model consists of a pair (D, ®) where D

is a circuit-with-holes in Free(X), ® is a causal process in C, and there exists a symmetric monoidal functor
F : Free(X) — C such that F(D) = ®.

When C = Mat[R*] we call (D, ®) a classical interventional causal model, whereas when C = CPM, we
call it a quantum interventional causal model.

Definition 4. In a classical or quantum interventional causal model with loci X7, ..., X, the interventional
channel from X; to X; is the process obtained by filling in all loci other than X; and X; with identity
interventions, and inputting a normalized, i.e., causal, state to the wire leaving locus X.

The interventional channel is a process of the form

J

=iy

which maps intervention—or non-deterministic intervention outcome—f : X; — X, at locus X; to the state on
system X resulting from the combination of intervention f at X; and trivial (identity) interventions at all
loci other than X; and X;. In particular, the interventional channel gives the consequence for X; of forcibly
setting the state leaving X; to v:

o

Thus the interventional channel yields what in ordinary causal modeling is called an “interventional distri-
bution,” or “the causal effect of X; on X;.” The shift in focus from distributions to channels is in line with
a trend toward channel-based accounts of probabilistic reasoning [JZ18; |CJ19], and facilitates the study of
conditional actions and stochastic policies.

A key commonality between the classical and quantum processes studied in this work is that they can be
completely specified by the numbers that result when they are locally composed with states and effects.

Proposition 1. The theories Mat[R.] and CPM have local process tomography: any process

Q

b

1s determined by numbers

Cc| D
(4)
A| B

where i, j, k, and | index finite, informationally complete sets of states or effects on the appropriate system-
types.



We call the set of numbers in equation the generalised matriz elements associated with a process
f. A local process tomography protocol for causal-i.e., probability-preserving—maps in Mat[R,] and CPM
uses observed probabilities of combinations of measurement outcomes conditioned on combinations of causal
state preparations. In the quantum case, though one cannot obtain all of the generalised matrix elements
using a single choice of measurement basis, it is always possible to obtain them from the measurement
statistics of multiple projective measurements. Local process tomography for comb-shaped quantum processes
corresponds to Ried et al.’s |[Rie+15| “causal tomography.”

Local process tomography for a classical or quantum interventional model typically relies on probabilities
given by filling intervention loci with maps of the form

v
T

where ¢ and j index the same set of states (and their adjoints), but may be distinct for a single outcome. An
outcome with distinct ¢ and j arise in an experiment when an observation is recorded and then a new state
is prepared according to the will of the experimenter.

In contrast, what we call observational, or non-experimental, data arise when the only outcomes of this
form that can be implemented are those satisfying i = j: there is no possibility of recording a locus’s incoming
state but then feeding forward a different state.

The general problem of causal identification is to use qualitative assumptions about the causal scenario
to compute quantitative causal influences given statistics from only a highly restricted set of interventions.
Usually the allowed interventions are “passive observations,” which non-deterministically implement the
aforementioned “observational” outcomes, and thereby teach the observer the probabilities of those out-
comes. There is no quantum process appropriately called passive observation; for the purposes of this paper,
the quantum interventions allowed as “observations” are exactly the projective measurements, which include
identity processes (totally uninformative measurements). Thus the observational outcomes whose joint prob-
abilities are available for inference include identity maps and maps composed of an effect followed by its
adjoint.

The class of actual deterministic processes—i.e., the measurement processes—that non-deterministically
result in what we call observational outcomes is closely related to a criterion, called informational symmetry,
whereby Ried et al. characterized certain interventions in both classical and quantum causal scenarios as
mere observations.|Rie+15] (Informational symmetry depends on both the intervening process and the prior
state. Here we desire a criterion applying only to the intervening process itself.) Note that (aside from the
trivial measurements) the measurement processes themselves, which are implemented with certainty, are not
part of our process theories. Instead we depict the individual, generally non-deterministic outcomes.

To apply our proofs of sufficient conditions for identifiability to the classical stochastic setting, we need
not characterize the complete classical stochastic analogue of the quantum class of observation outcomes,
but only posit that classical observation outcomes include identity matrices and matrices that have all zero
entries except 1 in a single position on the main diagonal. (When classical probability theory is viewed
as a sub-theory of quantum theory, what we call classical observation outcomes are in fact identified with
projective measurement outcomes.) The latter kind of matrix represents an outcome of what is normally
called “observing a random variable.” By marginalization, identity interventions in the classical setting can
be simulated from the probabilities of such projections onto pure causal states (point distributions). Thus our
proofs of classical identifiability really appeal to no intervention procedures other than ordinary maximally
informative classical observation.

A stochastic or quantum interventional channel, respectively, will be called identifiable from an abstract
string diagram if for any positive stochastic or quantum model of the string diagram, the interventional
channel can be computed from the probabilities of arbitrary combinations of observation outcomes at all
intervention loci of the model. Positivity is defined as follows:

Definition 5. A positive stochastic or quantum interventional model is a model whose composition with
any non-zero state and any non-zero effect gives a strictly positive number.



The states and effects composed with a model may in particular be products of those implemented at
individual intervention loci. For a positive model, therefore, any combination of observational outcomes occurs
with non-zero probability. The positivity condition in our process-theoretic account serves the same purpose
as the common requirement in ordinary causal modeling that a probabilistic causal model induce a strictly
positive joint distribution on all variables. Positivity ensures that all relevant conditional probabilities are
defined, and that detecting an arbitrary state at a locus after intervening at another locus is at least possible—
if it were not, asking for the corresponding interventional probability would make no sense. The definition of
identifiability from an abstract string diagram captures the notion that the assumptions of no direct influence
between loci disconnected in the abstract diagram—equivalent to assumptions of absence of certain arrows
in a directed acyclic graph representing a classical [Pea09] or quantum [CS16| causal structure—suffice for
inference: in any model satisfying at least the constraints implied by the string diagram, the quantity in
question can be deduced from observational outcome statistics.

Circumscribing the class of allowed interventions raises the question of whether the restrictions are strong
enough to rule out schemes like causal tomography that would always allow causal identification. The answer
is affirmative, as Ried et al. [Rie+15] noted, and is evident from string diagrams like

?

for which the interventional channel

[« ]

from X to Y is not identifiable. Two models yielding different interventional channels but identical obser-
vational outcome statistics are constructed via functorial interpretation according to Definition B} in both
models, u is interpreted as the Bell state |[¥+) on two qubits, z as a fixed quantum state with full support (i.e.,
a state whose composition with any non-zero effect is non-zero), and z as the quantum map that discards its
left-hand input and outputs its right-hand input unchanged. In the first model, y is interpreted as the map
that discards its right-hand input and applies to its left-hand input a projective measurement followed by a
depolarizing channel with parameter A. In the second model, y is interpreted as the map that discards its
left-hand input and applies to its right-hand input the same projective measurement followed by the same
depolarizing channel as in the first model. The interpretations of y in the two models are

~ ? ?

Model 1 Model 2



where

(p) = 10) (0loI0) 0] + 1) (1lol1) 1]
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These models are positive because z has full support, the reduced state arriving at X is maximally mixed,
and the state arriving at Y includes a maximally mixed state with weight A no matter what outcome has
occurred at X. The interventional channel is not identifiable from the abstract string diagram because it
cannot be computed for every positive model. The two-variable quantum identification schemes of |Rie+15],
however, might sometimes help in three-variable situations—perhaps some scenarios that involve coherence or
entanglement and also include an instrumental variable, which would correspond here to the locus Z.

Because Z does not influence X or Y in these models, this example is essentially equivalent to those two-
variable scenarios in [Rie+15] for which the desired interventional channel was noted to be unidentifiable. We
show three variables to detach our example from the conceptually unique two-variable case—for which classical
stochastic causal effects are in a sense never identifiable. Moreover, we explicitly note that identification is
impossible even for positive models of the string diagram.

4 Front-door scenarios

It is generally impossible to tell from observational data whether two correlated random variables, one of
which is known not to be a descendant of the other—i.e., one of which comes “after” the other—stand in
a cause-effect relation or are instead descendants of an unobserved common cause. If, however, there is a
third observed variable along the possible path of causal influence between the first two, such inference may
be possible. This is the content of the “front-door criterion” for causal identifiability. The criterion has a
quantum analogue, the simplest instances of which, along with their classical counterparts, are captured by
the following result, derived using common features of the quantum and classical process theories.

In this and the following section, each system represented by an uppercase letter may be a composite of
multiple smaller systems, and similarly each box could be a composite of smaller boxes. Thus, a single locus
in one of our diagrams might correspond to a list of several classical variables or quantum laboratories [CS16]
occupying several nodes of a more traditional causal diagram. What we call an intervention at a locus would
then correspond to (possibly choreographed) interventions at all those nodes.

Proposition 2. For quantum or stochastic models of a string diagram

the interventional channel

from X to'Y is identifiable.



Proof. First, we compute the process z, determined by its generalised matrix elements, which we obtain
by introducing a non-zero scalar factor and its inverse (where the inverse is indicated by a diagram inside
{—}71), then using the causality equation (1) to transform into the following quantity:

G
-4

U

HP QHP
> <H>

]

Note that the scalars being inverted are indeed non-zero, by positivity of the whole interventional model.
Furthermore, the rightmost diagram above consists of quantities that can be computed purely from projective
measurements at all of the loci (including the identity/trivial measurement at Z).

Once we have computed the generalised matrix elements of z, we can use them to compute those of the
outer comb-shaped process by adjusting for z:

Finally, we compose the two processes at Z, leaving the X input and output, to obtain the interventional

channel. O

Thus, in the quantum just as in the classical case, observation at a locus Z lying on the path between X
and Y “blocks” that path and allows control of the confounding influence of w.

5 A more general case of a single intervention

The identification criterion of Proposition 2| can be generalised, using the same proof technique, to a quantum
version of Jacobs, Kissinger, and Zanasi’s Theorem 8.1 [JKZ19).

Proposition 3. For quantum or stochastic models of a string diagram



the interventional channel

from X to C is identifiable.

Proof. First, we compute the generalised matrix elements of g, similarly to before:
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Once we have the generalised matrix elements for g, we can again generate those of the outer comb by
adjusting for g¢:
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Finally, we compose the two processes at A and B, leaving the X input and output, to obtain the interven-
tional channel. O

6 Conclusion

Any abstract, categorical account of established theory raises the question of what use may be made of
the translation to the abstract framework. The present article answers that question with regard to the
categorical study of causal inference initiated in [JKZ19|. The framework generalises the problems and facts
of causal inference in such a way that the generalisations are immediately applicable to the quantum realm,
in which the subject has been studied little. In addition to constituting new domain knowledge, the quantum
results obtained from the process-theoretic treatment promote confidence in the usefulness of the logical
foundations of causal inference presented in [JKZ19], foundations which may even be relied upon in the
course of further work in ordinary probabilistic reasoning.

Future work will first explicate the relationship between the interventional models presented here and the
graph-based quantum causal models of [CS16] and [BLO20], with a view to stating full quantum analogues
of sufficient graphical conditions for identifiability from |[GP95| and |[TP02]. Next, the results here can be
generalised to cases of multiple interventions at loci that may be causally related, as suggested in [JKZ19].
Moreover, there is the problem of establishing necessary conditions for identifiability, and comparing such con-
ditions to necessary conditions from the statistical causal inference literature. The overall research program
is to discover exactly how much of causal inference is about shapes of diagrams in a syntactic category.
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