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The Scalable ZX-calculus is a compact graphical language used to reason about linear maps between

quantum states. These diagrams have multiple applications, but they frequently have to be con-

structed in a case-by-case basis. In this work we present a method to encode quantum programs

implemented in a fragment of the linear dependently typed Proto-Quipper-D language as families

of SZX-diagrams. We define a subset of translatable Proto-Quipper-D programs and show that our

procedure is able to encode non-trivial algorithms as diagrams that grow linearly on the size of the

program.

1 Introduction

The ZX calculus [18] has been used as intermediary representation language for quantum programs in

optimization methods [12, 5, 3] and in the design of error correcting schemes [4]. The highly flexible

representation of linear maps as open graphs with a complete formal rewriting system and the multiple

extensions adapted to represent different sets of quantum primitives have proven useful in reasoning

about the properties of quantum circuits.

Quantum operations are usually represented as quantum circuits composed by primitive gates op-

erating over a fixed number of qubits. The ZX calculus has a close correspondence to this model and

is similarly limited to representing operations at a single-qubit level. In this work we will focus on the

Scalable ZX extension [7], which generalizes the ZX diagrams to work with arbitrary qubit registers us-

ing a compact representation. Previous work [6] has shown that the SZX calculus is capable of encoding

nontrivial algorithms via the presentation of multiple hand-written examples. For an efficient usage as

an intermediate representation language, we require an automated compilation method from quantum

programming languages to SZX diagrams. While ZX diagrams can be directly obtained from a program

compiled to a quantum circuit, to the best of our knowledge there is no efficient method leveraging the

parametricity of the SZX calculus.

There exist several quantum programming languages capable of encoding high-level parametric pro-

grams [1, 11, 17]. Quipper [15] is a language for quantum computing capable or generating families of

quantum operations indexed by parameters. These parameters need to be instantiated at compile time

to generate concrete quantum circuit representations. Quipper has multiple formal specifications, in

this work we focus on the linear dependently typed Proto-Quipper-D formalization [14, 13] to express

high-level programs with integer parameters.

The contributions of this article the following. We introduce a list initialization notation to represent

multiple elements of a SZX diagram family composed in parallel. We formally define a fragment of

Proto-Quipper-D programs that can be described as families of diagrams. Then we present a novel

compilation method that encodes quantum programs as families of SZX diagrams and demonstrate the

codification and translation of a nontrivial algorithm using our procedure.

http://arxiv.org/abs/2206.09376v1
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


2 Encoding High-level Quantum Programs as SZX-diagrams

In Section 2 we outline both languages and introduce the list initialization notation. In Section 3

we define the restricted Proto-Quipper-D fragment. In Section 4 we introduce the translation into SZX

diagrams. Finally, in Section 5 we demonstrate an encoding of the Quantum Fourier Transform algorithm

using our method. The proofs of the lemmas stated in this work can be found in Appendix E.

2 Background

We describe a quantum state as a system of n qubits corresponding to a vector in the C
2n

Hilbert

space. We may partition the set of qubits into multi-qubit registers representing logically related sub-

sets. Quantum computations under the QRAM model correspond to compositions of unitary operators

between these quantum states, called quantum gates. Additionally, the qubits may be initialized on a set

state and measured.

High-level programs can be encoded in Quipper [15], a Haskell-like programming language for

describing quantum computations. In this work we use a formalization of the language called Proto-

Quipper-D[13] with support for linear and dependent types. Concrete quantum operations correspond to

linear functions between quantum states, generated as a composition of primitive operations that can be

described directly as a quantum circuit. Generic circuits may have additional parameters that must fixed

at compilation time to produce the corresponding quantum circuit.

In Section 3 we describe a restricted fragment of the Proto-Quipper-D language containing the rel-

evant operations for the work presented in this paper.

2.1 The Scalable ZX-calculus. The ZX calculus [18] is a formal graphical language that encodes linear

maps between quantum states. Multiple extensions to the calculus have been proposed. We first present

the base calculus with the grounded-ZX extension, denoted ZX [10], to allow us to encode quantum

state measurement operations. A ZX diagram is generated by the following primitives, in addition to

parallel and serial composition:

α..
.

..
.n m : n1 → m1 α..
.

..
.n m : n1 → m1 : 11 → 11 : 11 → 01

: 11 → 11 : 01 → 21 : 21 → 01 : 21 → 21 : 01 → 01

where nk represents the n-tensor of k-qubit registers, the green and red nodes are called Z and X spiders,

α ∈ [0,2π) is the phase of the spiders, and the yellow square is called the Hadamard node. These

primitives allow us to encode any quantum operation, but they can become impractical when working

with multiple qubit registers.

The SZX calculus [7, 6] is a Scalable extension to the ZX-calculus that generalizes the primitives to

work with arbitrarily sized qubit registers. This facilitates the representation of diagrams with repeated

structure in a compact manner. Carette et al. [6] show that the scalable and grounded extensions can be

directly composed. Will refer to the resulting SZX -calculus as SZX for simplicity. Bold wires in a

SZX diagram are tagged with a non-negative integer representing the size of the qubit register they carry,

and other generators are marked in bold to represent a parallel application over each qubit in the register.

Bold spiders with multiplicity k are tagged with k-sized vectors of phases α = α1 :: · · · :: αk. The natural

extension of the ZX generators correspond to the following primitives:

−→
α..

.

..
.

k k

k k

n m : nk → mk
−→
α..

.

..
.

k k

k k

n m : nk → mk
k k : 1k → 1k

k : 1k → 00



A. Borgna, R. Romero 3

k : 1k → 1k k : 00 → 2k k : 2k → 00

k l

: 1k ⊗1l → 1l ⊗1k : 0k → 0k

Wires of multiplicity zero are equivalent to the empty mapping. We may omit writing the wire multipli-

city if it can be deduced by context.

The extension defines two additional generators; a split node to split registers into multiple wires, and

a function arrow to apply arbitrary functions over a register. In this work we restrict the arrow functions

to permutations σ : [0 . . .k)→ [0 . . .k) that rearrange the order of the wires. Using the split node and the

wire primitives can derive the rotated version, which we call a gather.

n
n+m

m

: 1n+m → 1n ⊗1m

n
n+m

m

: 1n ⊗1m → 1n+m
σ

: 1k → 1k

The rewriting rules of the calculus imply that a SZX diagrams can be considered as an open graph

where only the topology of its nodes and edges matters. In the translation process we will make repeated

use of the following reductions rules to simplify the diagrams:

n+m n+m
n

m

(sg)
= n+m n+m

n

m

n

m

(gs)
= m

n

We may also depict composition of gathers as single multi-legged generators. In an analogous manner,

we will use a legless gather to terminate wires with cardinality zero. This could be encoded as the

zero-multiplicity spider [ ] , which represents the empty mapping.

Refer to Appendix A for a complete definition of the rewriting rules and the interpretation of the

SZX calculus. Cf. [6] for a description of the calculus including the generalized arrow generators.

Carette et al. [6] showed that the SZX calculus can encode the repetition of a function f : 1n → 1n an

arbitrary number of times k ≥ 1 as follows:

kn

n n

f k kn

(k−1)n

=
(

n
f

n
)k

where f k corresponds to k parallel applications of f . With a simple modification this construction can be

used to encode an accumulating map operation.

Lemma 2.1 Let g : 1n ⊗1s → 1m ⊗1s and k ≥ 1, then

ks

s s

gk ks

(k−1)s
kn km

=
s g

kn km

. . .

. . .

g s

. . .
n

n m

m

As an example, given a list N = [n1,n2,n3] and a starting accumulator value x0, this construction would

produce the mapping ([n1,n2,n3],x0) 7→ ([m1,m2,m3],x3) where (mi,xi) = g(ni,xi−1) for i ∈ [1,3].

2.2 SZX diagram families and list instantiation. We introduce the definition of a family of SZX

diagrams D : Nk →D as a function from k integer parameters to SZX diagrams. We require the structure

of the diagrams to be the same for all elements in the family, parameters may only alter the wire tags and

spider phases. Partial application is allowed, we write D(n) to fix the first parameter of D.

Since instantiations of a family share the same structure, we can compose them in parallel by merging

the different values of wire tags and spider phases. We introduce a shorthand for instantiating a family of

diagrams on multiple values and combining the resulting diagrams in parallel. This definition is strictly
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more general than the thickening endofunctor presented by Carette et al. [6], which replicates a concrete

diagram in parallel. A list instantiation of a family of diagrams D : Nk+1 → D over a list N of integers

is written as (D(n),n ∈ N). This results in a family with one fewer parameter, (D(n),n ∈ N) : Nk → D .

We graphically depict a list instantiation as a dashed box in a diagram, as follows.

D(n)

n ∈ N

:= D(n)
n∈N

The definition of the list instantiation operator is given recursively on the construction of D in Fig-

ure 1. On the diagram wires we use v(N) to denote the wire cardinality ∑n∈N v(n), −→α (N) for the

concatenation of phase vectors
−→
α (n1) :: · · · ::

−→
α (nm), and σ(N) for the composition of permutations

⊗

n∈N σ(n). In general, a permutation arrow σ(N,v,w) instantiated in concrete values can be replaced

by a reordering of wires between two gather gates using the rewrite rule (p).

Lemma 2.2 For any diagram family D, n0 : N, N : Nk,

D(n)
n∈n0::N

=
D(n)
n∈N

D(n0)

Lemma 2.3 A diagram family initialized with the empty list corresponds to the empty map. For any

diagram family D,
D(n)
n∈[ ]

0 0
=

0 0

Lemma 2.4 The list instantiation procedure on an n-node diagram family adds O(n) nodes to the ori-

ginal diagram.

3 The λD calculus

We first define a base language from which to build our translation. In this section we present the calculus

λD, as a subset of the strongly normalizing Proto-Quipper-D programs. Terms are inductively defined

by:

M,N,L := x |C | R | U | 0 | 1 | n | meas | new |λxS.M | M N | λ ′xP.M | M @ N |

⋆ | M⊗N | let xS1 ⊗ yS2 = M in N | M;N |

VNilA | M :: N | let xS :: yVec n S = M in N

M�N | ifz L then M else N | for kP in M do N

Where C is a set of implicit bounded recursive primitives used for operating with vectors and iterating

functions. n ∈ N, � ∈ {+,−,×,/,∧} and ifz L then M else N is the conditional that tests for zero.

Here U denotes a set of unitary operations and R is a phase shift gate with a parametrized angle. In

this article we fix the former to the CNOT and Hadamard (H) gates, and the latter to the arbitrary rotation

gates Rz(α) and Rx(α).

For the remaining constants, 0 and 1 represent bits, new is used to create a qubit, and meas to

measure it. ⋆ is the inhabitant of the Unit type, and the sequence M;N is used to discard it. Qubits can

be combined via the tensor product M⊗N with let xS1 ⊗ yS2 = M in N as its corresponding destructor.



A. Borgna, R. Romero 5

Given D : Nk+1 → D , N = [n1, . . . ,nm] ∈N
m,

((D1 ⊗D2)(n),n ∈ N) := (D1(n),n ∈ N)⊗ (D2(n),n ∈ N)

n ∈ N

v(n) v(N)v(N)
:=

v(N)

((D2 ◦D1)(n),n ∈ N) := (D2(n),n ∈ N)◦ (D1(n),n ∈ N)

n ∈ N

v(n)v(N)
:=

v(N)

n ∈ N

v(n) v(n) v(N)v(N)
:=

v(N) v(N)

n ∈ N

v(n) v(n)σ(N) v(N)v(N)
:=

σ(N)v(N) v(N)

n ∈ N

−→
α (n)

v(n)

v(n)

v(n)

v(n)

v(N)

v(N)

v(N)

v(N)

...
... := −→

α (N)

v(N)

v(N)

v(N)

v(N)

...
...

n ∈ N

−→
α (n)

v(n)

v(n)

v(n)

v(n)

v(N)

v(N)

v(N)

v(N)

...
... := −→

α (N)

v(N)

v(N)

v(N)

v(N)

...
...

n ∈ N

v(n)
v(n)+w(n)

w(n)

(v+w)(N)

w(N)

v(N)

:=
(v+w)(N)

w(N)

v(N)
σ(N,v,w)v(N)+w(N)

Where σ(N,v,w) ∈ F
v(N)+w(N)×v(N)+w(N)
2 is the permutation defined as the matrix

σ(N,v,w) =
(

σ N
f |σ

N
g

)

, σ N
f ∈ F

v(N)+w(N)×v(N)
2 , σ N

g ∈ F
v(N)+w(N)×w(N)
2

σ
[ ]
f = Id0 σ n::N′

f =





Idv(n) 0

0 0

0 σ N′

f



 σ
[ ]
g = Id0 σ n::N′

g =





0 0

Idw(n) 0

0 σ N′

g





Figure 1: Definition of the list instantiation operator.

The system supports lists; VNilA represents the empty list, M :: N the constructor and let xS ::

yVec n S = M in N acts as the destructor. Finally, the term for kP in M do N allows iterating over para-

meter lists.

The typing system is defined in Figure 2. We write |Φ| for the list of variables in a typing context Φ.

The type Vec n A represents a vector of known length n of elements of type A.

We differentiate between state contexts (Noted with Γ and ∆) and parameter contexts (Noted with

Φ). For our case of study, parameter contexts consist only of pairs x : Nat or x : Vec (n : Nat) Nat, since

they are the only non-linear types of variables that we manage. Every other variable falls under the state

context. The terms λxS.M and MN correspond to the abstraction and application which will be used for

state-typed terms. The analogous constructions for parameter-typed terms are λ ′xP.M and M@N.

In this sense we deviate from the original Proto-Quipper-D type system, which supports a single

context decorated with indices. Instead, we use a linear and non-linear approach similar to the work of

Cervesato and Pfenning[9].
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A key difference between Quipper (and, by extension, Proto-Quipper-D) and λD is the approach to

defining circuits. In Quipper, circuits are an intrinsic part of the language and can be operated upon.

In our case, the translation into SZX diagrams will be mediated with a function defined outside the

language.

Types: A := S | P | (n : Nat)→ A[n]
State types: S := B | Q | Unit | S1 ⊗S2 | S1 ⊸ S2 | Vec (n : Nat) S

Parameter types: P := Nat | Vec (n : Nat) Nat
State contexts: Γ,∆ := · | x : S,Γ
Parameter contexts: Φ := · | x : P,Φ

Φ,x : A ⊢ x : A
ax

Φ ⊢ 0 : B
ax0

Φ ⊢ 1 : B
ax1

n ∈ N

Φ ⊢ n : Nat
axn

Φ ⊢ M : Nat Φ ⊢ N : Nat
Φ ⊢ M�N : Nat

�

Φ ⊢ meas : Q⊸ B
meas

Φ ⊢ new : B⊸ Q
new

Φ ⊢ ⋆ : Unit
axUnit

Φ ⊢ U : Q⊗n
⊸ Q⊗n

u

Φ ⊢ R : (n : Nat)→ Q⊗n
⊸ Q⊗n

r

Φ,Γ,x : A ⊢ M : B

Φ,Γ ⊢ λx.M : A ⊸ B
⊸i

Φ,x : Nat,Γ ⊢ M : B[x]

Φ,Γ ⊢ λ ′x.M : (n : Nat)→ B
→i

Φ,Γ ⊢ M : A ⊸ B Φ,∆ ⊢ N : A

Φ,Γ,∆ ⊢ MN : B
⊸e

Φ,Γ ⊢ M : (n : Nat)→ B Φ ⊢ N : Nat

Φ,Γ ⊢ M@N : B[n/N]
→e

Φ,Γ ⊢ M : Unit Φ,∆ ⊢ N : B

Φ,Γ,∆ ⊢ M;N : B
;

Φ,Γ ⊢ M : Vec 0 A Φ,∆ ⊢ N : B

Φ,Γ,∆ ⊢ M;v N : B
;vec

Φ,Γ ⊢ M : A Φ,∆ ⊢ N : B

Φ,Γ,∆ ⊢ M⊗N : A⊗B
⊗

Φ,Γ ⊢ M : A⊗B Φ,∆,x : A,y : B ⊢ N : C

Φ,Γ,∆ ⊢ let xA ⊗ yB = M in N : C
let⊗

Φ ⊢ VNilA : Vec 0 A
VNil

Φ,Γ ⊢ M : A Φ,∆ ⊢ N : Vec n A

Φ,Γ,∆ ⊢ M ::N : Vec (n+1) A
Vec

Φ,Γ ⊢ M : Vec (n+1) A Φ,∆,x : A,y : Vec n A ⊢ N : C

Φ,Γ,∆ ⊢ let xA : yVec n A = M in N : C
letvec

n : Nat Φ ⊢V : Vec n Nat k : Nat,Φ,Γ ⊢ M : A[k]

Φ,Γn ⊢ for k in V do M : Vec n A[k]
f or

Φ ⊢ L : Nat Φ,Γ ⊢ M : A Φ,Γ ⊢ N : A

Φ,Γ ⊢ ifz L then M else N : A
i f z

Figure 2: Type system.

Types are divided into two kinds; parameter and state types. Both of these can depend on terms of

type Nat. For the scope of this work, this dependence may only influence the size of vectors types.

Parameter types represent non-linear variable types which are known at the time of generation of the

concrete quantum operations. In the translation into SZX diagrams, these variables may dictate the labels

of the wires and spiders. Vectors of Nat terms represent their cartesian product. On the other hand, state



A. Borgna, R. Romero 7

types correspond to the quantum operations and states to be computed. In the translation, these terms

inform the shape and composition of the diagrams. Vectors of state type terms represent their tensor

product.

In lieu of unbounded and implicit recursion, we define a series of primitive functions for performing

explicit vector manipulation. These primitives can be defined in the original language, with the advantage

of them being strongly normalizing. The first four primitives are used to manage state vectors, while the

last one is used for generating parameters. For ease of translation some terms are decorated with type

annotations, however we will omit these for clarity when the type is apparent.

Φ ⊢ accuMapA,B,C : (n : Nat)→ Vec n A ⊸ Vec n (A ⊸C ⊸ B⊗C)⊸C ⊸ (Vec n B)⊗C

Φ ⊢ splitA : (n : Nat)→ (m : Nat)→ Vec (n+m) A ⊸ Vec n A⊗Vec m A

Φ ⊢ appendA : (n : Nat)→ (m : Nat)→ Vec n A ⊸ Vec m A ⊸ Vec (n+m) A

Φ ⊢ drop : (n : Nat)→ Vec n Unit⊸ Unit

Φ ⊢ range : (n : Nat)→ (m : Nat)→ Vec (m−n) Nat

Since every diagram represents a linear map between qubits there is no representation equivalent

to non-terminating terms, even for weakly normalizing programs. This is the main reason behind the

design choice of the primitives set. We include the operational semantics of the calculus and primitives

in Appendix B. The encoding of the primitives as Proto-Quipper-D functions is shown in Appendix C.

We additionally define the following helpful terms based on the previous primitives to aid in the

manipulation of vectors. Cf. Appendix B for their definition as λD-terms.

Φ ⊢ mapA,B : (n : Nat)→ Vec n A ⊸ Vec n (A ⊸ B)⊸ Vec n B

Φ ⊢ foldA,C : (n : Nat)→ Vec n A ⊸ Vec n (A ⊸C ⊸C)⊸C ⊸C

Φ ⊢ composeA : (n : Nat)→ Vec n (A ⊸ A)⊸ A ⊸ A

The distinction between primitives that deal with state and parameters highlights the inclusion of the

for as a construction into the language instead of a primitive. Since it acts over both parameter and

state types, its function is effectively to bridge the gap between the two of them. This operation closely

corresponds to the list instantiation procedure presented in the Section 2.1.

For example, if we take ns to be a vector of natural numbers, and xs a vector of abstractions

R@k(new0). The term for k in ns do xs generates a vector of quantum maps by instantiating the ab-

stractions for each individual parameter in ns.

4 Encoding programs as diagram families

In this section we introduce an encoding of the lambda calculus presented in Section 3 into families of

SZX diagrams with context variables as inputs and term values as outputs. We split the lambda-terms

into those that represent linear mappings between quantum states and can be encoded as families of SZX

diagrams, and parameter terms that can be completely evaluated at compile-time.

4.1 Parameter evaluation. We say a type is evaluable if it has the form A = (n1 : Nat)→ ··· → (nk :

Nat)→ P[n1, . . . ,nk] with P a parameter type. Since A does not encode a quantum operation, we interpret

it directly into functions over vectors of natural numbers. The translation of an evaluable type, ⌊A⌋, is

defined recursively as follows:

⌊(n : Nat)→ B[n]⌋=N→
⋃

n∈N

⌊B[n]⌋ ⌊Nat⌋= N ⌊Vec (n : Nat) Nat⌋= N
n
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Given a type judgement Φ ⊢ L : P where P is an evaluable type, we define ⌊L⌋Φ as the evaluation of

the term into a function from parameters into products of natural numbers. Since the typing is syntax

directed, the evaluation is defined directly over the terms as follows:

⌊x⌋x:Nat,Φ = x, |Φ| 7→ x ⌊n⌋Φ = |Φ| 7→ n ⌊M�N⌋Φ = |Φ| 7→ ⌊M⌋Φ (|Φ|)�⌊N⌋Φ (|Φ|)

⌊M :: N⌋Φ = |Φ| 7→ ⌊M⌋Φ (|Φ|)×⌊N⌋Φ (|Φ|)
⌊

VNilNat
⌋

Φ
= |Φ| 7→ []

⌊

λ ′xP.M
⌋

Φ
= x, |Φ| 7→ ⌊M⌋Φ (x, |Φ|) ⌊M@N⌋Φ = ⌊M⌋Φ (⌊N⌋Φ (|Φ|),Φ)

⌊ifz L then M else N⌋Φ = |Φ| 7→

{

⌊M⌋Φ (|Φ|) if ⌊L⌋Φ (|Φ|) = 0

⌊N⌋Φ (|Φ|) otherwise
⌊range ⌋Φ = n,m, |Φ| 7→

m−1

×
i=n

i

⌊for k in V do M⌋Φ = |Φ| 7→ ×
k∈⌊V⌋Φ(|Φ|)

⌊M⌋k:NatΦ (k, |Φ|)

⌊

let xP :: yVec n P = M in N
⌋

Φ
= |Φ| 7→ ⌊N⌋x:P,y:Vec n P,Φ (y1, [y2, . . . ,yn], |Φ|) where [y1,...,yn]=⌊M⌋Φ(|Φ|)

Lemma 4.1 Given an evaluable type A and a type judgement Φ ⊢ L : A, ⌊L⌋Φ ∈×x:P∈Φ ⌊P⌋→ ⌊A⌋.

Lemma 4.2 Given an evaluable type A, a type judgement Φ ⊢ L : A, and M → N, then ⌊M⌋Φ = ⌊N⌋Φ.

4.2 Diagram encoding. A non-evaluable type has necessarily the form A = (n1 : Nat) → ··· → (nk :

Nat) → S, with S any state type. We call such types translatable since they correspond to terms that

encode quantum operations that can be described as families of diagrams.

We first define a translation J·K from state types into wire multiplicities as follows. Notice that due to

the symmetries of the SZX diagrams the linear functions have the same representation as the products.

JBK= 1 JQK= 1 JVec (n : Nat) AK= JAK⊗n JA⊗BK= JAK⊗JBK JA ⊸ BK= JAK⊗JBK

Given a translatable type judgement Φ,Γ ⊢ M : (n1 : Nat)→ ··· → (nk : Nat)→ S we can encode it

as a family of SZX diagrams n1, . . . ,nk, |Φ| 7→ M(|Φ|)
JS[|Φ|]KJΓK

. We will omit the brackets in our

diagrams for clarity. In a similar manner to the evaluation, we define the translation JMKΦ,Γ recursively

on the terms as follows:

JxKΦ,x:A = |Φ| 7→
A J0KΦ = |Φ| 7→

Q J1KΦ = |Φ| 7→
Q

π JmeasKΦ = |Φ| 7→
Q⊸Q

JnewKΦ = |Φ| 7→
1⊸1 JUKΦ = |Φ| 7→

nQ⊸nQ

U
JRKΦ = n, |Φ| 7→

Q⊸Q

R(n)

q
λ ′xA.M

y
Φ,Γ

= x, |Φ| 7→ M(x, |Φ|)
AΓ JM @NKΦ,Γ = |Φ| 7→ M(⌊N⌋Φ (|Φ|), |Φ|)

BΓ

q
λxA.M

y
Φ,Γ

= |Φ| 7→

A

M(|Φ|) B

A⊸B

Γ JM NKΦ,Γ,∆ = |Φ| 7→

∆

M(|Φ|)
A⊸B BΓ

N(|Φ|)
A

JM;NKΦ,Γ,∆ = |Φ| 7→ ∆
N(|Φ|)

A

Γ
M(|Φ|)

J⋆KΦ = |Φ| 7→ JM⊗NKΦ,Γ,∆ = |Φ| 7→ ∆
N(|Φ|)

A
Γ

M(|Φ|)

B

A⊗B
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JM;v NKΦ,Γ,∆ = |Φ| 7→ ∆
N(|Φ|)

A

Γ
M(|Φ|)

JVNilKΦ = |Φ| 7→

q
let xA ⊗ yB = M in N

y
Φ,Γ,∆

= |Φ| 7→
∆

N(|Φ|)B

Γ
M(|Φ|)

A⊗B A
C

q
let xA : yVec n A = M in N

y
Φ,Γ,∆

= |Φ| 7→
∆

N(|Φ|)
A⊗n

Γ
M(|Φ|)

A⊗n+1 A
C

JM ::NKΦ,Γ,∆ = |Φ| 7→ ∆
N(|Φ|)

A
Γ

M(|Φ|)

A⊗n

A⊗n+1

Jfor k in V do MKΦ,Γn = |Φ| 7→
A⊗n

M(k)
k∈⌊V⌋(|Φ|)

Γ⊗n

Jifz L then M else NKΦ,Γ = |Φ| 7→
N

k∈[0]⊗δl>0

Γ
M

k∈[0]⊗δl=0

A⊗δl>0

A

Γ⊗δl=0

Γ⊗δl>0

A⊗δl=0

where δ is the Kronecker delta and l = ⌊L⌋(|Φ|). Notice that the new and meas operations share the same

translation. Although new can be encoded as a simple wire, we keep the additional node to maintain the

symmetry with the measurement.

The unitary operators U and rotations R correspond to a predefined set of primitives, and their trans-

lation is defined on a by case basis. The following table shows the encoding of the operators used in this

paper.

Name Rz(n) Rz−1(n) Rx(n) Rx−1(n) H CNOT

Encoding π
n − π

n
π
n − π

n

The primitives split, append, drop and accuMap are translated below. Since vectors are iso-

morphic to products in the wire encoding, the first three primitives do not perform any operation. For the

accumulating map we utilize the construction presented in Lemma 2.1, replacing the function box with

a function vector input. In the latter we omit the wires and gathers connecting the inputs and outputs of

the function to a single wire on the right of the diagram for clarity.

JsplitAKΦ = n,m, |Φ| 7→ (n+m)A⊸nA⊗mA(n+m)A JappendAKΦ = n,m, |Φ| 7→ nA⊸mA⊸(n+m)A(n+m)A

JdropKΦ = n, |Φ| 7→ n0⊸0

q
accuMapA,B,C

y
Φ
= n, |Φ| 7→

nCC C

(n−1)C

nA

nB
τn,A,B,C

n(A⊸C⊸B⊗C) nA⊸nC⊸nB⊗nC
C

nA

n(A⊸C⊸B⊗C)

nB⊗CC

0A

0(A⊸C⊸B⊗C)

k ∈ [0]⊗δn>0

k ∈ [0]⊗δn=0
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where τn,A,B,C is a permutation that rearranges the vectors of functions into tensors of vectors for each

parameter and return value. That is, τn,A,B,C reorders a sequence of registers (A,C,B,C) . . . (A,C,B,C)
into the sequence (A . . .A)(C . . .C)(B . . .B)(C . . .C). It is defined as follows,

τn,A,B,C(i) =























i mod k+a∗ (i div k) if i mod k < a

i mod k+ c∗ (i div k)+a∗ (n−1) if a ≤ i mod k < (a+ c)

i mod k+b∗ (i div k)+ (a+ c)∗ (n−1) if (a+ c)≤ i mod k < (a+ c+b)

i mod k+ c∗ (i div k)+ (a+ c+b)∗ (n−1) if (a+ c+b)≤ i mod k

for i ∈ [0,(a+c+b+c)∗n), where mod and div are the integer modulo and division operators, a = JAK,

b = JBK, c = JCK, and k = a+ c+b+ c.

As a consequence of Lemma 2.4, the number of nodes in the produced diagrams grows linearly

with the size of the input. Notice that the ZX spiders, the ground, and the Hadamard operator are only

produced in the translations of the quantum primitives. We may instead have used other variations of

the calculus supporting the scalable extension, such as the ZH calculus [2], better suited for other sets of

quantum operators.

Lemma 4.3 The translation procedure is correct in respect to the operational semantics of λD. If A is a

translatable type, Φ,Γ ⊢ M : A, and M → N, then JMKΦ,Γ = JNKΦ,Γ.

5 Application example: QFT

The Quantum Fourier Transform is an algorithm used extensively in quantum computation, notably as

part of Shor’s algorithm for integer factorization [16]. The QFT function operates generically over n-

qubit states and in general a circuit encoding of it requires O(n2) gates. In this section we present

an encoding of the algorithm as a λD term, followed by the translation into a family of constant-sized

diagrams. The corresponding Proto-Quipper-D program is listed in Appendix D.

The following presentation divides the algorithm into three parts. The crot term applies a controlled

rotation over a qubit with a parametrized angle. apply crot operates over the last n − k qubits of an

n-qubit state by applying a Hadamard gate to the first one and then using it as target of successive crot

applications using the rest of the qubits as controls. Finally, qft repeats apply crot for all values of k. In

the terms, we use n . . .m as a shorthand for range @n @m.

crot : (n : Nat)→ (Q⊗Q)⊸ (Q⊗Q)
crot := λ ′nNat.λqsQ⊗Q.let cQ⊗qQ = qs in let cQ⊗qQ = CNOT c (Rz @2n q) in CNOT c (Rz−1 @2n q)

apply crot : (n : Nat)→ (k : Nat)→ Vec n Q⊸ Vec n Q

apply crot := λ ′nNat. λ ′kNat. λqsVec n Q.

ifz (n− k) then qs else

let hVec k Q⊗qs′ Vec n−k Q = split @k @(n− k) qs in

let qQ⊗ csVec n−k−1 Q = qs′ in

let f sVec (n−k−1) (Q⊗Q⊸Q⊗Q) = for mNat in 2..(n− k+1) do crot @m in

let cs′ (Vec n−k−1 Q)⊗q′ Q = accuMap f s (H q) cs in

concat h (q′ : cs′)
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qft : (n : Nat)→ Vec n Q⊸ Vec n Q

qft := λ ′nNat.λqsVec n Q.compose

(for kNat in reverse vec @(0..n) do λqs′ Vec n Q.apply crot @n @k qs′) qs

The translation of each term into a family of diagrams is shown below. We omit the wire connecting

the function inputs to the right side of the graphs for clarity and eliminate superfluous gathers and splitters

using rules (sg) and (gs). Notice that, in contrast to a quantum circuit encoding, the resulting diagram’s

size does not depend on the number of qubits n.

JcrotK = n 7→
2

− π
2n

π
2n

2

Japply crotK = n,k 7→

nn
k

n−k
crot(m)

m∈2..(n−k+1)

n−k−2

n−k−1

n−k−1

n−k−1

n−k−1

n−k

n×δn−k=0

n×δn−k>0n×δn−k>0

x∈[0]⊗δn−k>0

JqftK = n 7→ n n

n×(n−1)

apply crot(n,k)
k∈rev(0..n)

n×n n×n

6 Discussion

In this article, we presented an efficient method to compile parametric quantum programs written in a

fragment of the Proto-Quipper-D language into families of SZX diagrams. We restricted the fragment to

strongly normalizing terms that can be represented as diagrams. Additionally, we introduced a notation

to easily compose elements of a diagram family in parallel. We proved that our method produces compact

diagrams and shown that it can encode non-trivial algorithms.

A current line of work is defining categorical semantics for the calculus and families of diagrams,

including a subsequent proof of adequacy for the translation. More work needs to be done to expand the

fragment of the Quipper language that can be translated.

We would like to acknowledge Benoı̂t Valiron for helpful discussion on this topic, and Frank Fu

for his help during the implementation of the Proto-Quipper-D primitives. This work was suppor-

ted in part by the French National Research Agency (ANR) under the research projects SoftQPRO

ANR-17-CE25-0009-02 and Plan France 2030 ANR-22-PETQ-0007, by the DGE of the French Min-

istry of Industry under the research project PIA-GDN/QuantEx P163746-484124, by the project STIC-

AmSud project Qapla’ 21-SITC-10, the ECOS-Sud A17C03 project, the PICT-2019-1272 project, the

PIP 11220200100368CO project, and the French-Argentinian IRP SINFIN.
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A Semantics of the SZX calculus

We reproduce below the standard interpretation of SZX diagrams as density matrices and completely

positive maps [8, 6], modulo scalars.

Let Dn ⊆ C
2n×2n

be the set of n-qubit density matrices. We define the functor {{·}} : ZX →
CPM(Qubit) which associates to any diagram D : n → m a completely positive map {{D}} : Dn → Dm,

inductively as follows.

{{D1 ⊗D2}} := {{D1}}⊗{{D2}} {{D2 ◦D1}} := {{D2}}◦{{D1}}

{{

k k
}}

:= ρ 7→V ρ V † where V = ∑
x,y∈Fk

2

(−1)x•y |y〉〈x|

{{

−→α..
.

..
.

k k

k k

n m

}}

:= ρ 7→V ρ V † where V = ∑
x∈Fk

2

eix•−→α |x〉⊗m 〈x|⊗n

{{

−→
α..

.

..
.

k k

k k

n m

}}

:=
{{

k k
}}⊗m

◦

{{

−→
α..

.

..
.

k k

k k

n m

}}

◦
{{

k k
}}⊗n

{{

k
}}

:= ρ 7→ ∑
x∈Fk

2

〈x|ρ |x〉
{{

k
}}

:= ∑
x∈Fk

2

|x〉〈x|
{{

k
}}

:= ρ 7→ ρ

{{

n
n+m

m

}}

:= ρ 7→ ρ
{{ σ }}

:= ρ 7→V ρ V † where V = ∑
x∈Fk

2

|σ(x)〉〈x|

{{

k

}}

:= ρ 7→ ∑
x∈Fk

2

〈xx|ρ |xx〉
{{

k

}}

:= ∑
x∈Fk

2

|xx〉〈xx|
{{ }}

:= Id0

{{

k l
}}

:= ρ 7→V ρ V † where V = ∑
x∈Fk

2,y∈F
l
2

|yx〉〈xy|

where ∀u,v ∈ R
n,u• v = ∑m

i=1 uivi.

The SZX calculus defines a set of rewrite rules, shown below.

β

..
.

..
.

α ..
.

..
.

=..
.

..
.

..
.α+β

( fff )

−α=

π

π α ..
.

..
.

π
(πππ)

..
.α =..
.

(ccc)

..
. = ..
.

(hhh)
(iii111)
=

=
(iii222)

(bbb)
=

..
.α α ..
.

(kkk)
=

(lll)
= α

(mmm)
=

(nnn)
=

n+m n+m
n

m

(sg)
= n+m n+m

n

m

n

m

(gs)
= m

n

−→
α

..
.=..
.

−→
β

(((zzz222)))
−→
α ::

−→
β =

(((www)))(((zzz111)))
= =

(((zzz333)))
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Additionally, for the arrows restricted to permutations of wires we have the following rules [6]:

=
(((ppp111)))

σ
=
(((ppp))) σ

...
...

...

σ σ−1

−→α σ(−→α )=
(((ppp222)))...

...
σ

σ

σ
σ σ

=
(((ppp333)))

=
(((ppp444)))...

...
σ1 ⊗σ2

σ1

σ2

Finally, since wires with cardinality zero correspond to empty mappings they can be discarded from the

diagrams.
..

.=..
. ( /0111)

[ ]..
.

0 0

0 0

..
.

=
( /0222)

0 0 0

n=
( /0444)

n

0
n

=
( /0333)

0 0 0

=
( /0w)

0

B Operational Semantics of the λD calculus

We define a weak call-by-value small step operational semantics on Table 1.

A key point to note here is that every rewriting rule preserves the state. There are no measurements

or unitary operations applied, the rewriting is merely syntactical. Since our goal is translation into an

SZX-diagram, this system is powerful enough. We include the rewrite rules for the primitives on Table 2.

Additionally, we define useful macros based on these functions on Table 3. They provide syntactic

sugar to deal with state vectors.

C Implementation of primitives in Proto-Quipper-D

The implicitly recursive primitives defined in Section 3 can be implemented in proto-quipper-D as fol-

lows. The implementation has been checked with the dpq tool implemented by Frank Fu (see https://

gitlab.com/frank-peng-fu/dpq-remake).

module Primitives where

import "/dpq/Prelude.dpq"

foreach : ! forall a b (n : Nat)

-> (Parameter a) => !(a -> b) -> Vec a n -> Vec b n

foreach f l = map f l

split : ! forall a (n : Nat) (m: Nat) -> Vec a (n+m) -> Vec a n * Vec a m

split n m v =

case v of

VNil -> (VNil, VNil)

VCons x v’ ->

case n of

Z -> (VNil, v)

S n’ ->

let (v1, v2) = split n’ m v’

in (VCons x v1, v2)

cons : ! forall a (n : Nat) (m: Nat) -> Vec a n -> Vec a m -> Vec a (n+m)

cons n m vn vm =

case vn of

https://gitlab.com/frank-peng-fu/dpq-remake
https://gitlab.com/frank-peng-fu/dpq-remake


16 Encoding High-level Quantum Programs as SZX-diagrams

V := x |C | 0 | 1 | meas | new | U |

λxS.M | λ ′xP.M |⋆ | M⊗N |

VNil | M :: N

(λx.M)V → M[V/x]

(λ ′x.M)@V → M[V/x]

let x⊗ y = M1 ⊗M2 in N → N[x/M1][y/M2]

let x :: y = M1 :: M2 in N → N[x/M1][y/M2]

ifz V then M else N →

{

M If V = 0

N Otherwise

⋆ ; M → M

VNil ;v M → M

V1�V2 →V Where Vi = ni and V = n1�n2

for k in M1 :: M2 do N → N[k/M1] :: for k in M2 do N

for k in VNil do N → VNil

M → N
MV → NV

M → N
LM → LN

M → N
M@V → N@V

M → N
L@M → L@N

M → N
let x⊗ y = M in L → let x⊗ y = N in L

M → N
let x :: y = M in L → let x :: y = N in L

M → N
L�M → L�N

M → N
M�V → M�V

M → N
M ; L → N ; L

M → N
let x : y = M in L → let x : y = N in L

M → N
ifz M then L1 else L2 → ifz N then L1 else L2

M → N
for k in M do L → for k in N do L

Table 1: Rewrite system for λD.
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accuMap @n xs f s z →ifz n then xs ;v f s ;v VNil⊗ z else

let x :: xs′ = xs in let f :: f s′ = f s in

let y⊗ z′ = f x z in let ys⊗ z′′ = accuMap @(n−1) xs′ f s′ z′ in

(y :: ys)⊗ z′′

split @n @m xs →ifz n then VNil⊗ xs else let y :: xs′ = xs in

let ys1 ⊗ ys2 = split@(n−1) @m xs′ in (y :: ys1)⊗ ys2

append @n @m xs ys →ifz n then xs ;v ys else

let x :: xs′ = xs in x :: (append @(n−1) @m xs′ ys)

drop @n xs →ifz n then xs ;v ⋆ else let x :: xs′ = xs in x ; drop @(n−1) xs′

range @n @m →ifz m−n then VNil else n :: range @(n+1) @m

Table 2: Reductions pertaining to the primitives.

map @n xs f s := let f s′⊗u1 = accuMap @n f s

(for k in (0..n) do λ f .λu.(λx.λu. f x⊗u)⊗u) ⋆

in let xs′⊗u2 = accuMap @n xs f s′ ⋆

in u1 ; u2 ; xs′

fold @n xs f s z := let f s′⊗u = accuMap @n f s

(for k in (0..n) do λ f .λu.(λx.λy. ⋆⊗ f x y)⊗u) ⋆

in let us⊗ r = accuMap @n xs f s′ z

in u ; drop @n us ; r

compose @n xs = fold @n xs (for k in 0..n do (λ f .λg.λx. f (g x))) (λx.x)

Table 3: Function macros.
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VNil -> VNil

VCons x vn’ -> x : cons n m vn’ vm

accuMap : ! forall a b c (n : Nat)

-> Vec a n -> Vec (a -> c -> (b,c)) n -> c -> (Vec b n, c)

accuMap n v fs z =

case v of

VNil -> (VNil, z)

VCons x v’ ->

case n of

S n’ ->

let (y, z’) = f x z

in (VCons y accuMap n’ v’ f z’, z’)

mapp : ! forall a b (n : Nat) -> Vec a n -> Vec (a -> b) n -> Vec b n

mapp n v f =

let (v’, _) = accuMap n v (\x z -> (f x, z)) VNil

in v’

fold : ! forall a b (n : Nat) -> Vec a n -> Vec (a -> b -> b) n -> b -> b

fold n v f z =

let (_, z’) = accuMap n v (\x z -> (VNil, f x z)) z

in z’

compose : ! (n : Nat) -> Vec (a -> a) n -> a -> a

compose n fs x = fold fs (replicate n (\f x -> f x)) x

range_aux : ! (n : Nat) -> (m : Nat) -> Nat -> Vec Nat (minus m n)

range_aux n m x =

case m of

Z -> VNil

S m’ -> case n of

Z -> let r’ = range_aux Z m’ (S x)

in subst (\x -> Vec Nat x) (minusSZ’ m’) (VCons x r’)

S n’ -> range_aux n’ m’ (S x)

range : ! (n : Nat) -> (m : Nat) -> Vec Nat (minus m n)

range n m = range_aux n m Z

drop : ! (n : Nat) -> Vec Unit n -> Unit

drop n v = case n of

Z -> ()

S n’ -> case v of

VCons _ v’ -> drop n’ v’

D QFT algorithm in Quipper code

The following Proto-Quipper-D code corresponds to the algorithm presented in Section 5. This imple-

mentation has been checked with the dpq tool implemented by Frank Fu (see https://gitlab.com/

frank-peng-fu/dpq-remake). Notice that, in contrast to the presented lambda terms, the type checker

https://gitlab.com/frank-peng-fu/dpq-remake
https://gitlab.com/frank-peng-fu/dpq-remake
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implementation requires explicit encodings of the Leibniz equalities between parameter types.

module Qft where

import "/dpq/Prelude.dpq"

crot : ! (n : Nat) -> Qubit * Qubit -> Qubit * Qubit

crot n q = let (q’,c) = q in flip $ R n q’ c

-- Specify types to help the typechecker

applyCrot_aux : ! (n : Nat) -> Qubit -> Qubit -> Qubit * Qubit

applyCrot_aux n ctrl q = crot n (q, ctrl)

-- Apply a CROT sequence to a qubit register, ignoring the first k qubits.

applyCrot : ! (n k : Nat) -> Vec Qubit n -> Vec Qubit n

applyCrot n k qs =

let WithEq r e = inspect (minus n k)

in case r of

Z -> qs

S n’ ->

let

-- e : Eq Nat (S n’) (minus n k)

-- e’ : Eq Nat (add k (S n’)) n

e’ = trans (symAdd k (S n’)) $ minusPlus n n’ k $ sym (minus n k) e

-- qs’ : Vec Qubit (minus n k)

qs’ = subst (\m -> Vec Qubit m) (sym (add k (S n’)) e’) qs

(head, qs’) = split k (S n’) $ qs’

(q,ctrls) = chop qs’

-- fs : Vec (Qubit -> Qubit -> Qubit * Qubit) (minus n’ Z)

fs = foreach (\k -> applyCrot_aux (S(S k))) $ 0..n’

-- fs : Vec (Qubit -> Qubit -> Qubit * Qubit) Z

eq = sym n’ $ minusZ n’

fs = subst (\m -> Vec (Qubit -> Qubit -> Qubit * Qubit) m) eq fs

(ctrls’, q’) = accumap fs (H q) ctrls

in subst (\m -> Vec Qubit m) e’ $ append head (VCons q’ ctrls’)

-- Required for the type checker to derive the second !

qft_aux : ! (n : Nat) -> ! (k : Nat) -> Vec Qubit n -> Vec Qubit n

qft_aux n head_size qs = applyCrot n head_size qs

qft : ! (n : Nat) -> Vec Qubit n -> Vec Qubit n

qft n qs = let f = qft_aux n in compose’ (foreach f $ reverse_vec (0..n)) qs

E Proofs

Lemma (2.1) Let g : 1n ⊗1s → 1m ⊗1s and k ≥ 1, then

ks

s s

gk ks

(k−1)s
kn km

=
s g

kn km

. . .

. . .

g s

. . .
n

n m

m
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Proof By induction on k. If k = 1,

s

s s

g s

0
n m

(i1, /01)
= s

s s

g s
0

n m

( /04)
= s g s

n m

If k > 1,

ks

s s

gk ks

(k−1)s

kn km

de f
= ks

s s
gk−1 ks

(k−1)s

kn kmg
mn

(k−1)s (k−1)s

(gs)
= s s

gk−1

(k−2)s

kn kmg
mn

(k−1)s (k−1)s

s

=
s s

gk−1

(k−2)s

kn km

g

m

n

(k−1)s (k−1)s

s

(k−1)n

(k−1)m HI
=

s g

kn km

. . .

. . .

g s

. . .
n

n m

m

�

Lemma (2.2) For any diagram family D, n0 : N, N : Nk,

D(n)
n∈n0::N

=
D(n)
n∈N

D(n0)

Proof By induction on the term construction

• If D is a gather,

(v+w)(n::N)

w(n::N)

v(n::N) σ(n::N,v,w)
v(n::N)+w(n::N) (p)

=
(v+w)(n::N)

w(n::N)

v(n::N)

σ(N,v,w)

v(N)+w(N)

Idw(n)

Idv(n)

v(N)+w(N)

v(n) v(n)

w(n) w(n)

w(N)w(N)
v(N) v(N)

(sg,gs,p)
= (v+w)(n::N)

w(n::N)

v(n::N)

σ(N,v,w)

v(N)+w(N)
(v+w)(N)

v(n)
(v+w)(n)

w(n)

w(N)

v(N)

• The other cases can be directly derived from the commutation properties of the gather generator

via rules (z1),(z2),(z3),(w), and (p4). �

Lemma (2.3) A diagram family initialized with the empty list corresponds to the empty map. For any

diagram family D,
D(n)
n∈[ ]

0 0
=

0 0

Proof Notice that any wire in the initialized diagrams has cardinality zero. By rules ( /01), ( /02), ( /03),
( /04), and ( /0w) every internal node can be eliminated from the diagram. �

Lemma (2.4) The list instantiation procedure on an n-node diagram family adds O(n) nodes to the

original diagram.
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Proof By induction on the term construction. Notice that the instantiation of any term except the gather

does not introduce any new nodes, and the gather introduction creates exactly one extra node. Therefore,

the list instantiation adds a number of nodes equal to the number of gather generators in the diagram. �

Lemma E.5 Given type judgements Φ,x : A⊢M : B, and Φ⊢N : A. ⌊M⌋x:A,Φ (⌊N⌋Φ , |Φ|)= ⌊M[N/x]⌋Φ (
|Φ| ).

Proof Proof by straightforward induction on M. �

Lemma (4.1) Given an evaluable type A and a type judgement Φ ⊢ M : A, ⌊M⌋Φ ∈×x:P∈Φ ⌊P⌋→ ⌊A⌋.

Proof By induction on the typing judgement Φ ⊢ M : A:

• If Φ ⊢ n : Nat, then ⌊n⌋Φ = |Φ| 7→ n ∈×x:P∈Φ ⌊P⌋ → N.

• If Φ,x : A ⊢ x : A, then ⌊x⌋x:A,Φ = x, |Φ| 7→ x ∈×y:P∈x:A,Φ ⌊P⌋ → ⌊A⌋.

• If Φ⊢M�N : NatΦ,Γ,∆⊢M ::N : Vec (n+1) A, then ⌊M�N⌋Φ = |Φ| 7→ ⌊M⌋Φ (|Φ|)� ⌊N⌋Φ ( |Φ|
). By inductive hypothesis, ⌊M⌋Φ (|Φ|),⌊M⌋Φ (|Φ|) ∈ N. Then, |Φ| 7→ ⌊M⌋Φ (|Φ|)�⌊N⌋Φ (|Φ|) ∈

×x:P∈Φ ⌊P⌋→ N.

• If Φ ⊢ λ ′x.M : (x : P) → B then
⌊

λ ′xP.M
⌋

Φ
= x, |Φ| 7→ ⌊M⌋Φ (x, |Φ|). By inductive hypothesis,

⌊M⌋Φ (x, |Φ|) ∈ ⌊B⌋. Then, |Φ| 7→ ⌊M⌋Φ (x, |Φ|) ∈×y:P∈x:PΦ ⌊P⌋→ ⌊B⌋.

• If Φ,Γ ⊢ M@N : B[x/r], then ⌊M@N⌋Φ = |Φ| 7→ ⌊M⌋Φ (⌊N⌋Φ (|Φ|),Φ). By inductive hypothesis,

⌊N⌋Φ (|Φ|) ∈ N and x 7→ ⌊M⌋Φ (x,Φ) ∈ ⌊x : Nat→ B[x]⌋. Then, |Φ| 7→ ⌊M⌋Φ (⌊N⌋Φ (|Φ|),Φ) ∈

×y:P∈Φ ⌊P⌋→ ⌊B[A/x]⌋.

• If Φ ⊢ VNilA : Vec 0 A, then
⌊

VNilP
⌋

Φ
= |Φ| 7→ [] ∈×x:P∈Φ ⌊P⌋→ N

0.

• If Φ,Γ,∆ ⊢ M ::N : Vec (n+1) A, then ⌊M :: N⌋Φ = |Φ| 7→ ⌊M⌋Φ (|Φ|)×⌊N⌋Φ (|Φ|). By induct-

ive hypothesis MΦ(|Φ|) ∈ ⌊A⌋ and ⌊N⌋Φ (|Φ|) ∈ ⌊A⌋n
. Then, |Φ| 7→ ⌊M⌋Φ (|Φ|)×⌊N⌋Φ (|Φ|) ∈

×x:P∈Φ ⌊P⌋→ ⌊A⌋n+1
.

• If Φ,Γ ⊢ ifz L then M else N : A, then

⌊ifz L then M else N⌋Φ = |Φ| 7→

{

⌊M⌋Φ (|Φ|) if ⌊L⌋Φ (|Φ|) = 0

⌊N⌋Φ (|Φ|) otherwise
.

By inductive hypothesis ⌊m⌋Φ (|Φ|),⌊N⌋Φ (|Φ|) ∈ ⌊A⌋ and ⌊L⌋Φ (|Φ|) ∈N.

Then ⌊ifz L then M else N⌋Φ ∈×x:P∈Φ ⌊P⌋→ ⌊A⌋.

• If Φ ⊢ for k in N do M : Vec n A, then ⌊for k in V do M⌋Φ = |Φ| 7→×k∈⌊N⌋Φ(|Φ|) ⌊M⌋k:NatΦ (k,

|Φ|). By induction hypothesis, ⌊N⌋Φ (|Φ|) ∈ Natn and x 7→ ⌊M⌋Φ (x,Φ) ∈ ⌊k : Nat→ A[k]⌋. Then

|Φ| 7→×k∈⌊N⌋Φ(|Φ|) ⌊M⌋k:NatΦ (k, |Φ|) ∈×x:P∈Φ ⌊P⌋→ ⌊A[k/N]⌋n
.

• If Φ ⊢ let xB : yVec n B = M in N : A, then
⌊

let xP :: yVec n P = M in N
⌋

Φ
=|Φ| 7→

⌊N⌋x:P,y:Vec n PΦ (y1, [y2, . . . ,yn], |Φ|) where [y1, . . . ,yn] = ⌊M⌋Φ (|Φ|).

By inductive hypothesis ⌊M⌋Φ (|Φ|) ∈ ⌊B⌋n
and ⌊N⌋x:P,y:Vec n PΦ (y1, [y2, . . . ,yn], |Φ|) ∈ ⌊A⌋. Then

|Φ| 7→ ⌊N⌋x:P,y:Vec n PΦ (y1, [y2, . . . ,yn], |Φ|) ∈×x:P∈Φ ⌊P⌋→ ⌊A⌋.

• If Φ⊢ range : (n : Nat)→ (m : Nat)→ Vec (m−n) Nat, then ⌊range ⌋Φ = n,m, |Φ| 7→×m−1
i=n i∈

×z:P∈x:Nat,y:Nat,Φ ⌊P⌋→ N
m−n

�

Lemma (4.2) Given an evaluable type A, a type judgement Φ ⊢ M : A, and M → N, then ⌊M⌋Φ = ⌊N⌋Φ.
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Proof By induction on the evaluation function ⌊M⌋Φ:

• If M = x, M = n, M = VNilNat, M = λ ′x.M′, M = M1 :: M2 or M = range then M is in normal

form and it does not reduce.

• If M = M1�M2 we have three cases:

– If M → M1�N with M2 → N, then:

⌊M1�M2⌋Φ = |Φ| 7→ ⌊M1⌋Φ (|Φ|)�⌊M2⌋Φ (|Φ|)

= |Φ| 7→ ⌊M1⌋Φ (|Φ|)�⌊N⌋Φ (|Φ|)

= ⌊M1�N⌋Φ

– If M → N�V with M1 → N, then:

⌊M1�V⌋Φ = |Φ| 7→ ⌊M1⌋Φ (|Φ|)�⌊V ⌋Φ (|Φ|)

= |Φ| 7→ ⌊N⌋Φ (|Φ|)�⌊V⌋Φ (|Φ|)

= ⌊N�V⌋Φ

– If M → n with Mi = ni ∈ N and n = n1�n2, then:

⌊n1�n2⌋Φ = |Φ| 7→ ⌊n1⌋Φ (|Φ|)�⌊n2⌋Φ (|Φ|)

= |Φ| 7→ n1�n2

= |Φ| 7→ n

= ⌊n⌋Φ

• If M = M1 @ M2 we have three cases:

– If M → M1 @ N with M2 → N, then:

⌊M1 @ M2⌋Φ = |Φ| 7→ ⌊M1⌋Φ (⌊M2⌋Φ (|Φ|),Φ)

= |Φ| 7→ ⌊M1⌋Φ (⌊N⌋Φ (|Φ|),Φ)

= ⌊M1 @ N⌋Φ

– If M → N @ V with M1 → N, then:

⌊M1 @ V⌋Φ = |Φ| 7→ ⌊M1⌋Φ (⌊V⌋Φ (|Φ|),Φ)

= |Φ| 7→ ⌊M1⌋Φ (⌊V⌋Φ (|Φ|),Φ)

= ⌊N @V⌋Φ

– If M → M′[V/x] with M1 = λ ′x.M′ and M2 =V , then:

⌊

(λ ′x.M)@V
⌋

Φ
= |Φ| 7→

⌊

λ ′x.M
⌋

Φ
(⌊V⌋Φ (|Φ|),Φ)

= |Φ| 7→ (x, |Φ| 7→ ⌊M⌋x,Φ (x, |Φ|))(⌊V⌋Φ (|Φ|),Φ)

= |Φ| 7→ ⌊M[V/X ]⌋Φ (|Φ|)

= ⌊M[V/X ]⌋Φ
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• If M = ifz M′ then L else R we have three cases:

– If M → ifz N then L else R with M′ → N, then:

⌊

ifz M′ then L else R
⌋

Φ
= |Φ| 7→

{

⌊M⌋Φ (|Φ|) if ⌊M′⌋Φ (|Φ|) = 0

⌊N⌋Φ (|Φ|) otherwise

= |Φ| 7→

{

⌊M⌋Φ (|Φ|) if ⌊M′⌋Φ (|Φ|) = 0

⌊N⌋Φ (|Φ|) otherwise

= ⌊ifz N then L else R⌋Φ

– If M → L with M′ = 0, then:

⌊

ifz M′ then L else R
⌋

Φ
= |Φ| 7→

{

⌊M⌋Φ (|Φ|) if ⌊M′⌋Φ (|Φ|) = 0

⌊N⌋Φ (|Φ|) otherwise

= |Φ| 7→ ⌊L⌋Φ (|Φ|)

= ⌊L⌋Φ

– The symmetric case for the else branch is similar to the previous one.

• If M = for k in M′ do R we have three cases:

– If M → for k in N do R with M′ → N, then:
⌊

for k in M′ do R
⌋

Φ
= |Φ| 7→ ×

k∈⌊M′⌋Φ(|Φ|)

⌊R⌋Φ (k, |Φ|)

= |Φ| 7→ ×
k∈⌊N⌋Φ(|Φ|)

⌊R⌋Φ (k, |Φ|)

= ⌊for k in N do R⌋Φ

– If M → R[k/M1] : for k in M2 do R with M′ =V :: L, then:

⌊for k in M1 :: M2 do R⌋Φ = |Φ| 7→ ×
k∈⌊M1 :: M2⌋Φ(|Φ|)

⌊R⌋Φ (k, |Φ|)

= |Φ| 7→ ×
k∈⌊M1⌋Φ(|Φ|)×⌊M2⌋Φ(|Φ|)

⌊R⌋Φ (k, |Φ|)

= |Φ| 7→ ⌊R⌋k,Φ (⌊M1⌋Φ (|Φ|), |Φ|)× ×
k∈⌊M2⌋Φ(|Φ|

⌊R⌋k,Φ (k, |Φ|)

= ⌊R[M1/k]⌋Φ ×⌊for k in M2 do R⌋Φ

= ⌊R[M1/k] :: for k in M2 do R⌋Φ

– If M → VNil with M′ = VNilNat, then:
⌊

for k in VNilNat do R
⌋

Φ
= |Φ| 7→ ×

k∈⌊VNilNat⌋Φ(|Φ|)

⌊R⌋Φ (k, |Φ|)

= |Φ| 7→×
k∈[]

⌊R⌋Φ (k, |Φ|)

= |Φ| 7→ []

=
⌊

VNilNat
⌋

Φ
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• If M = let x :: y = M1 in M2 we have two cases:

– If M → let x :: y = N in M2 with M1 → N, then:

⌊let x :: y = M1 in M2⌋Φ = |Φ| 7→ ⌊M2⌋Φ (y1, [y2, . . . ,yn], |Φ|) where [y1,...,yn]=⌊M1⌋Φ(|Φ|)

= |Φ| 7→ ⌊M2⌋Φ (y1, [y2, . . . ,yn], |Φ|) where [y1,...,yn]=⌊N⌋Φ(|Φ|)

= ⌊let x :: y = N in M2⌋Φ

– If M → N[x/M1][y/M2] with M′ = M1 :: M2, then:

⌊for k in M1 :: M2 do N⌋Φ = |Φ| 7→ ⌊N⌋x,y,Φ (y1, [y2, . . . ,yn], |Φ|)

= |Φ| 7→ ⌊N⌋x,y,Φ (M1,M2, |Φ|)

= |Φ| 7→ ⌊N[M1/x][M2/y]⌋Φ (|Φ|)

= ⌊N[M1/x][M2/y]⌋Φ

where [y1, . . . ,yn] = ⌊M1 :: M2⌋Φ (|Φ|).

• If M = range @n @M2 then:

⌊range @n@m⌋Φ = |Φ| 7→
m−1

×
i=n

i

= |Φ| 7→

{

[] if n−m = 0

n××m−1
i=n+1 i otherwise

= |Φ| 7→

{

[] if ⌊n−m⌋Φ = 0

⌊n⌋Φ ×⌊range @(n+1)@m)⌋ otherwise

= ⌊ifz m−n then VNil else n :: range @(n+1) @m⌋Φ �

Lemma (4.3) The translation procedure is correct in respect to the operational semantics. If A is a

translatable type, Φ,Γ ⊢ M : A, and M → N, then JMKΦ,Γ = JNKΦ,Γ.

Proof By case analysis on the reductions of translatable terms.

• If M = (λxA.M′)V and N = M′[V/x],

q
(λxA.M′)V

y
Φ,∆,Γ

= |Φ| 7→

∆

B

V (|Φ|)
A

A

M′(|Φ|) B

A⊸B

Γ

(gs)
= |Φ| 7→

∆
V (|Φ|)

A

M′(|Φ|)
B

Γ =
q

M′[V/x]
y

Φ,∆,Γ

• If M = (λ ′xA.M′)@V and N = M′[V/x],

q
(λ ′xA.M′)@V

y
Φ,Γ

= |Φ| 7→
⌊

(λ ′xA.M′)
⌋

Φ
(⌊V⌋Φ (|Φ|), |Φ|)

BΓ

= |Φ| 7→ ⌊(M′⌋Φ (⌊V⌋Φ (|Φ|), |Φ|)
BΓ
=

q
M′[V/x]

y
Φ,Γ
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• If M = let xA ⊗ yB =V1 ⊗V2 in M′ and N = M′[V1/x][V2/y],

q
let xA ⊗ yB =V1 ⊗V2 in M′

y
Φ,Γ,∆,Λ

= |Φ| 7→

Λ

N(|Φ|)B

A
C∆

N(|Φ|)

A
Γ

M(|Φ|)

B

A⊗B

(gs)
= |Φ| 7→

Λ

N(|Φ|)
C∆

N(|Φ|)

A
Γ

M(|Φ|)

B
=

q
M′[V1/x][V2/y]

y
Φ,∆,Γ,Λ

• If M = let xA :: yVec n A =V1 :: V2 in M′ and N = M′[V1/x][V2/y],

q
let xA :: yVec n A =V1 :: V2 in M′

y
Φ,Γ,∆,Λ

= |Φ| 7→

Λ

N(|Φ|)nA

A
B∆

N(|Φ|)

A
Γ

M(|Φ|)

nA

(n+1)A

(gs)
= |Φ| 7→

Λ

N(|Φ|)
B∆

N(|Φ|)

A
Γ

M(|Φ|)

nA
=

q
M′[V1/x][V2/y]

y
Φ,∆,Γ,Λ

• If M = ifz L then M′ else N ′,

– if L = 0 and N = M′, ⌊L⌋Φ = 0 and

q
ifz L then M′ else N ′

y
Φ,Γ

= |Φ| 7→
N′(|Φ|)

k∈[ ]

Γ
M′(|Φ|)

k∈[0] A
Γ

0

A

0

Lemma 2.3
= |Φ| 7→

Γ M′(|Φ|) A
Γ

0

A

0

( /04)
= |Φ| 7→

Γ
M′(|Φ|)

A
=

q
M′

y
Φ,Γ

– The case where L > 0 and N = N ′ is symmetric to the case above.

• If M = VNil;M′ and N = M′,

q
VNil;v M′

y
Φ,Γ

= |Φ| 7→ Γ
M′(|Φ|)

A
=

q
M′

y
Φ,Γ

• If M = ⋆;M′ and N = M′,

q
⋆;M′

y
Φ,Γ

= |Φ| 7→ Γ
M′(|Φ|)

A
=

q
M′

y
Φ,Γ

• If M = for k in V :: M′ do N ′ and N = N ′[k/V ] :: for k in M′ do N ′,

q
for k in V :: M′ do N ′

y
Φ,Γ⊗n = |Φ| 7→

A⊗n
N′(k, |Φ|)

k∈⌊V ::M′⌋(|Φ|)

Γ⊗n
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Lemma 2.2
= |Φ| 7→

A⊗n

N′(k, |Φ|)
k∈⌊M′⌋(|Φ|)

Γ⊗n
N′(⌊V⌋(|Φ|), |Φ|) AΓ

Γ⊗n−1 A⊗n−1

=
q

N ′[k/V ] :: for k in M′ do N ′
y

Φ,Γ⊗n

• If M = for k in VNil do N ′ and N = VNil,

q
for k in VNil do N ′

y
Φ
= |Φ| 7→

0N′(k, |Φ|)
k∈[ ]

0

Lemma 2.3
= |Φ| 7→

00
= |Φ| 7→ = JVNilKΦ

• If M = accuMapA,B,C N ′ Mxs M f s Mz and N = ifz N ′ then xs ;v f s ;v VNil⊗Mz else

let x :: xs′ = Mxs in let f :: f s′ = M f s in let y⊗ z′ = f x z in let ys⊗ z′′ = accuMap @(N ′−
1) xs′ f s′ z′ in (y :: ys)⊗ z′′. Let n = ⌊N1⌋Φ (|Φ|).

Notice that, by definition of τn,A,B,C,

τn+1,A,B,C

(n+1)(A⊸C⊸B⊗C) (n+1)A⊸(n+1)C⊸(n+1)B⊗(n+1)C

(n+1)A

(n+1)C

(n+1)B

(n+1)C

(p)
= τn,A,B,C

n(A⊸C⊸B⊗C) nA⊸nC⊸nB⊗nC

A⊸C⊸B⊗C

(n+1)A

(n+1)C

(n+1)B

(n+1)C

Therefore,
q
accuMapA,B,C N ′ Mxs M f s Mz

y
Φ,Γ,∆,Π

= |Φ| 7→ M f s(|Φ|)

Mxs(|Φ|)

Mz(|Φ|)

Γ

Π

∆

nCC C

(n−1)C

nA

nB
τn,A,B,C

n(A⊸C⊸B⊗C) nA⊸nC⊸nB⊗nCC

nA

n(A⊸C⊸B⊗C)

nB⊗CC

0A

0(A⊸C⊸B⊗C)

k ∈ [0]⊗δn>0

k ∈ [0]⊗δn=0
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(p,gs,sg)
= |Φ| 7→ M f s(|Φ|)

Mxs(|Φ|)

Mz(|Φ|)

Γ

Π

∆

(n−1)CC

C
(n−2)C

nA

nB

τn−1,A,B,C

C

nA

n(A⊸C⊸B⊗C)

nB⊗CC

0A

0(A⊸C⊸B⊗C)

k ∈ [0]⊗δn>0

k ∈ [0]⊗δn=0

A⊸C⊸B⊗C

(n−1)A
A

(n−1)B

B

C

= Jifz N ′ then xs ;v f s ;v VNil⊗Mz else let x :: xs′ = Mxs in let f :: f s′ = M f s in let y⊗
z′ = f x z in let ys⊗ z′′ = accuMap @(N ′−1) xs′ f s′ z′ in (y :: ys)⊗ z′′KΦ,Γ,∆,Π

• If M = splitA @n @m xs and N = ifz n then VNil⊗ xs else let y :: xs′ = xs in let ys1 ⊗
ys2 = split@(n−1) @m xs′ in (y :: ys1)⊗ ys2. Let n = ⌊N1⌋Φ (|Φ|) and m = ⌊N2⌋Φ (|Φ|).

JsplitA @n @m xsKΦ,Γ = |Φ| 7→
Γ

M′(|Φ|)

(n+m)A
(n+m)A

(n+m)A (sg,gs)
= |Φ| 7→

Γ
M′(|Φ|)

(n+m)A

( /04),Lemma 2.3
= |Φ| 7→

Γ
M′(|Φ|)

(n+m)A

k ∈ [0]⊗δn>0

k ∈ [0]⊗δn=0

Γ
M′(|Φ|)

(n+m)A

Γ (n+m)A

(sg,gs, /04)
= |Φ| 7→

Γ
M′(|Φ|)

(n+m)A

k ∈ [0]⊗δn>0

k ∈ [0]⊗δn=0

Γ
M′(|Φ|)

(n+m)A

Γ (n+m)A

0

(n+m)A

(n+m)A

mA

nA
A

(n−1+m)A

(n−1+m)A
(n−1+m)A

(n−1)A

= Jifz n then VNil⊗ xs else let y :: xs′ = xs in let ys1 ⊗ ys2 = split@(n− 1) @m xs′ in

(y :: ys1)⊗ ys2KΦ,Γ
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• If M = appendA @N1 @N2 M1 M2 and N = ifz N1 then M1 ;v M2 else let x :: xs′ = M1 in

x :: (append @(N1 −1) @N2 M1 M2). Let n = ⌊N1⌋Φ (|Φ|) and m = ⌊N2⌋Φ (|Φ|).

JappendA @N1 @N2 M1 M2KΦ,Γ,∆ = |Φ| 7→

Γ
M1(|Φ|)

nA

∆
M2(|Φ|)

mA

(n+m)A
(n+m)A

(n+m)A

( /04),Lemma 2.3
= |Φ| 7→

Γ
M1(|Φ|)

nA

∆
M2(|Φ|)

mA

(n+m)A
(n+m)A

(n+m)A

Γ
M1(|Φ|)

nA

∆
M2(|Φ|)

mA

k ∈ [0]⊗δn>0

k ∈ [0]⊗δn=0

Γ

∆

(sg,gs)
= |Φ| 7→ Γ

M1(|Φ|)
nA

∆
M2(|Φ|)

mA

(n+m)A

Γ
M1(|Φ|)

nA

∆
M2(|Φ|)

mA

k ∈ [0]⊗δn>0

k ∈ [0]⊗δn=0

Γ

∆

(i1, /01, /04,sg,gs)
= |Φ| 7→ Γ M1(|Φ|)

nA

∆
M2(|Φ|)

mA

(n+m)A

Γ
M1(|Φ|)

∆
M2(|Φ|)

mA

k ∈ [0]⊗δn>0

k ∈ [0]⊗δn=0

Γ

∆

(n−1+m)A

(n−1+m)A

(n−1+m)A

A

(n−1)A

= Jifz N1 then M1 ;v M2 else let x :: xs′ = M1 in x :: (append @(N1 −1) @N2 M1 M2KΦ,Γ,∆

• If M = drop @N ′ M′ and N = ifz N ′ then M′ ; ⋆ else let x :: xs′ = M′ in x ; drop @(N ′−
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1) xs′. Let l = ⌊N ′⌋Φ (|Φ|),

q
drop @N ′ M′

y
Φ,Γ

= |Φ| 7→ 0

Γ
M′

0

0

( /04),Lemma 2.3
= |Φ| 7→

0

Γ
M′

00

0

Γ
M′

0

0

Γ

k ∈ [0]⊗δl>0

k ∈ [0]⊗δl=0

0

(z3, /04)
= |Φ| 7→

0

Γ M′
0

0Γ
M′

0

Γ

k ∈ [0]⊗δl>0

k ∈ [0]⊗δl=0

0

0

0

=
q
ifz N ′ then M′ ; ⋆ else let x :: xs′ = M′ in x ; drop @(N ′−1) xs′

y
Φ,Γ

• If M → N is an internal reduction of a translatable term, then the diagrams result equivalent via the

inductive hypothesis.

• If M → N is an internal reduction of an evaluable term, then the diagrams result equivalent via the

inductive hypothesis and Lemma 4.2. �
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