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Q# is a standalone domain-specific programming language from Microsoft for writing and running
quantum programs. Like most industrial languages, it was designed without a formal specification,
which can naturally lead to ambiguity in its interpretation. We aim to provide a formal language
definition for Q#, placing the language on a solid mathematical foundation and enabling further
evolution of its design and type system. This paper presents λQ#, an idealized version of Q# that
illustrates how we may view Q# as a quantum ALGOL (algorithmic language). We show the safety
properties enforced by λQ#’s type system and present its equational semantics based on a fully
complete algebraic theory by Staton.

1 Introduction

Microsoft’s Q# programming language [55] is one of the most full-featured quantum programming
languages that have emerged from the recent boom in quantum computing research. However, with a
growing code base and increasing popularity comes the demand for more features and the resulting added
complexity. Hence, Q# faces challenges familiar to many growing programming languages—maintaining
correctness, ease of use, and intuitive understanding while evolving to meet users’ needs.

Quantum programming languages face unique challenges that are not present in classical languages.
Quantum algorithms are more challenging to design and reason about than classical ones as they use
quantum phenomena like superposition and entanglement. Quantum programs are challenging to test and
debug. Their simulation on classical computers is slow and limited to a handful of qubits while languages
like Q# are designed for large-scale fault-tolerant quantum computers with thousands of logical qubits.
When running a quantum program directly on quantum hardware, we cannot observe the whole quantum
state directly, and measuring a classical result during execution (partial observation) may itself destroy the
state. Additionally, existing quantum hardware provides limited qubit count and poor gate fidelity.

These challenges underscore why it is essential for Q# to have a well-specified definition that can serve
as a foundation for extensions, multiple implementations, and formal verification of programs written
in the language. A formal specification and mechanization of its metatheory will help ensure that Q# is
robust enough to meet the unique needs of the developing field of quantum software engineering.

A tried-and-tested approach to achieving this ambitious goal is to define an idealized core version of
the language, provide an elaboration from the surface language to this core language, and provide static
and dynamic semantics for the core. In this paper, we argue that even though Q# is a relatively large
language, we can condense it to a small core capturing most of its interesting features. We call this core
λQ#. In it, we make several implicit features of Q# explicit: its treatment of qubits as references, its stack-
like memory management that enables reasoning about the quantum state in a local manner, and its safe
synthesis of effectful and pure computation. In the classical setting, this stack-like memory management
and combination of effectful and pure computation are inherent to many ALGOL-like languages [47].
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2 Q# as a Quantum Algorithmic Language

Contributions In 2018, when introducing Q#, its designers stated that as opposed to several existing
circuit definition languages, “Q# is an algorithm definition language” [55]; the goal of our paper is to
show that, in its essence, Q# is a quantum algorithmic language (ALGOL).

• To support this characterization, we introduce λQ#, an idealized version of Q# inspired by Harper’s
language MA (Modernized Algol) [16]. In λQ#, we expose values of the Qubit type in Q# as
references to logical qubits and formalize the ALGOL-like stack discipline implicit in Q#’s quantum
memory management.

• We develop a type system for λQ# that extends Q#’s type system to enforce the no-cloning theorem
and stack-like management of qubits.

• We provide an equational dynamics for λQ# building upon the fully complete equational theory of
quantum computation by Staton [53].

• Finally, we provide an elaboration relation from Q# to λQ#, thereby endowing a significant portion
of Q# with a formal specification and additional safety guarantees.

Outline In the rest of the paper, we review background on the Q# programming language and Staton’s
theory for quantum computation (§2); introduce λQ# along with its syntax and semantics (§3); describe
how λQ# is faithful to the surface Q# language (§4); and discuss related and future work (§5 and §6).

2 Background

Before introducing λQ#, we discuss the two projects that inspired our work. The first is Microsoft’s
Q# [55], a modern, self-contained quantum programming language that boasts a large community of
developers. The second is Sam Staton’s equational theory for quantum programs [53], which provides a
compelling alternative to the standard matrix-based semantics for quantum programs.

2.1 The Q# Programming Language

Q# [55] is a hybrid quantum-classical programming language that supports interlacing stateful quantum
operations with pure classical functions, collectively referred to as callables. Q# encourages thinking
about quantum programs as algorithms rather than circuits, where quantum operations can be combined
with classical control flow such as branches and loops. When a programmer measures a qubit, they can
perform an arbitrary classical computation on the result, and the program execution can continue without
requiring the qubit to be released. This computational model allows quantum and classical algorithms to
be fully mixed. At the same time, Q# enforces a degree of separation between the quantum and classical
components. Operations can call functions, but functions cannot call operations. An example Q# program,
implementing the quantum teleportation protocol, is shown in Listing 1 in Appendix D.

Q# contains a blend of functional and imperative features (it evolved from an F#-like language [4]).
For classical data, Q# follows the so-called value semantics [21], perhaps better known as referential
transparency. Q# functions are always pure, and variable bindings are immutable by default. Bindings
may be declared mutable, but they correspond to a local state change, enclosed in the scope of the parent
callable. Hence, equational reasoning is possible across function boundaries. By contrast, qubits are
opaque types that act as references to logical qubits [10, 11]—their values are never exposed. Gate
operations are inherently effectful: a (single-qubit) quantum gate application is a procedure that takes a
qubit reference as input and returns a trivial output of type Unit after altering the quantum state.
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operation NewQubit () : Qubit {
use q = Qubit ();
return q;

}

(a) Returning a qubit after its lifetime has ended.

operation Cloning () : Qubit {
use q1 = Qubit ();
let q2 = q1;
CNOT(q1, q2);

}

(b) Using the same qubit as both control and target.

Figure 1: Sample unsafe Q# programs.

Callables in Q# can be higher-order: functions and operations are values and can be given as arguments
to, or returned by, other functions and operations. Both functions and operations can be partially applied.
Quantum algorithms parameterized by quantum subroutines are easily expressed in Q# using higher-order
operations. For example, an operation implementing Grover’s search [14] can accept an oracle as a
parameter and apply it in each iteration.

Q# supports a restricted form of metaprogramming, where the compiler can automatically generate
the adjoint and controlled versions of unitary operations. Operations can declare their support for Adjoint
and Controlled functors (in Q#’s terminology1) using the characteristics Adj and Ctl, respectively.

Q# follows the QRAM model of computation [25], which assumes an unbounded supply of logical
qubits from which the programmer can obtain a reference to a new qubit by calling the use command.
Qubits are hence allocated and deallocated in a stack-like manner, where the lifetime of a qubit is equivalent
to the lexical scope of the use command. Even though this stack discipline can ensure safe (quantum)
memory management, it is currently not enforced by the Q# compiler and type system. Figure 1a shows a
minimal example that passes the type checker but fails at runtime (in a simulator).

Programmers are allowed to create new bindings using let that refer to the same qubit as another
binding, leading to aliasing of qubit references. While aliasing is ubiquitous in Q#, it can lead to unsafe
behavior in violation of the no-cloning theorem [59], which forbids duplication of qubits. In Figure 1b,
both q1 and q2 refer to the same qubit. Applying CNOT with q1 as the control and q2 as the target is
equivalent to cloning the underlying qubit. Currently, Q# cannot prevent this issue statically.

An informal specification of the Q# language was recently published [43]. However, it does not
capture the subtle aspects of the language, such as the aliasing of qubit references or its goal of maintaining
a stack discipline. Our work makes these subtleties explicit and formal.

2.2 An Equational Theory for QRAM

Staton [53] presents a substructural (linear) version of his framework for “parameterized algebraic
theories” [52]. He develops an axiomatization for quantum computation using this framework, which
he shows to be fully complete. Staton then extracts an equational theory for a quantum programming
language from his algebraic theory that uses generic effects rather than algebraic operations [42]. Finally,
Staton remarks upon a variant of his theory [53, §6.2] that applies to the QRAM model, where instead of
working with qubits, we work with references to qubits. This is the approach taken in projects like the
Quantum IO Monad [2], Quantum Hoare Type Theory [49, 50], and, to our advantage, Q#.2

Here we reproduce Staton’s theory of a “quantum local store” [53, §6.2, p. 11] for reference; we will

1Perhaps a better name for functors would be ‘combinators’ from the functional programming community to avoid confusion
with other accepted meanings of the term ‘functor.’

2However, the stack-like management of qubits is unique to Q#.
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see in §3.3 how this algebraic theory helps us describe the equational dynamics of λQ#. We assume that
the qubit references are unique, which we guarantee for λQ# in §3.2.1.

Generic Effects Staton adds the following generic effects to a standard linear type theory and obtains a
quantum programming language [53, §5] similar to Selinger’s QPL [48].

⊢ new() : qubit

Γ ⊢ t : qubit⊗n

Γ ⊢ applyU(t) : qubit⊗n

Γ ⊢ t : qubit

Γ ⊢measure(t) : bool

Program Equations There are two interesting classes of axioms (ignoring the axioms that describe
commutativity of let). For completeness, we also show axiom (C) pertaining to the discard operation
(equivalent to measuring a qubit and ignoring its result). However, it does not apply in the QRAM model
as noted by Staton [53, §6.2].
Axioms relating unitary gates and measurement:

(A) measure(applyX(a))≡ ¬ measure(a)

(B) let (a′,x′) be applyD(U,V )
(a,x) in (measure(a′),x′)≡

if measure(a) = 0 then (0,applyU(x)) else (1,applyV (x))

(C) discard(applyU(x))≡ discard(x)

Axioms relating allocation with unitaries and measurement:

(D) measure(new())≡ 0

(E) applyD(U,V )
(new(),x)≡ (new(),applyU(x))

where D(U,V ) =U⊕V =
(

U 0
0 V

)
applies U or V depending on the value of its first argument.

Axiom (A) says that applying the quantum X gate to a qubit and then measuring it is the same as
negating the measurement result. Axiom (B) explains the action of a block diagonal matrix D(U,V ) as
quantum control by stating that applying the diagonal matrix and then measuring the control qubit is
equivalent to measuring the control qubit and branching on the result to decide whether to apply U or
V . Axiom (C) says that if the qubits are to be discarded, applying a unitary is the same as doing nothing.
Axiom (D) states that measuring a new qubit always results in 0, i.e., qubits are always initialized to 0.
Axiom (E) says that using a new qubit as control is the same as controlling by 0.

We will show in §3.3 that our λQ# calculus follows similar program equations.

3 λλλ Q#: A Core Calculus for Q#

Our approach closely follows the type-theoretic interpretation of Standard ML, where Harper and
Stone [19] developed a well-typed internal language for Standard ML, defined an elaboration rela-
tion between the external language and this internal language, and proved the properties of the metatheory
of the language using the internal language. Harper and collaborators [7, 27] followed this work with the
mechanization of the metatheory using the Twelf logical framework [41]. As a first step, we identify and
isolate the core language, λQ#, that captures the essential aspects of Q#. This core language is explicitly
typed, and the safety properties of its type structure can be easily stated and proved.
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Once we have identified the core, we define an elaboration relation from the surface Q# language to
λQ# (§4). A Q# program is well-formed when it has a well-typed elaboration, and its semantics is defined
to be that of its elaboration. The advantage of this approach is that proving properties about the metatheory
of a large language becomes tractable because we only need to do it for the small, well-formed core.

To mirror the separation between operations and functions in Q#, we base the design of λQ# on
Harper’s MA (Modernized Algol) [16], which maintains a separation between commands that modify
state and expressions that do not. Q# is an ALGOL-like language in more ways than one—syntax, block-
structure, local (classical) state, and safe integration of functional and imperative paradigms. However,
unlike Reynolds’ Idealized ALGOL [47], the variables in Q# are immutable by default, and the language
follows a call-by-value semantics, both of which make it closer to Harper’s MA.

Before presenting λQ#, let us motivate our design choices and establish some terminology. Q# has
two kinds of variable bindings. Those defined using the let keyword are the same as the variables in
MA and follow the usual substitution-based semantics of functional programming languages. Those
defined using the mutable keyword correspond to assignables that can be reassigned similar to “variables”
in imperative languages. Significantly, they are restricted to the lexical scope in which they are bound.
Since they do not affect equational reasoning across function boundaries, and our focus is on the quantum
state, we ignore mutable variables in the rest of this paper. Qubits have type Qubit and syntactically look
just like other variables but are references to underlying logical qubits that are never exposed. Unlike
classical bindings, which follow value semantics, aliasing is permitted on qubits, leading to problems such
as the violation of the no-cloning theorem discussed in §2.1. Qubits come into scope with either the use

or borrow keywords. The former provides access to freshly allocated qubits in state |0⟩, while the latter
allows access to previously allocated (and potentially entangled) qubits. We do not consider borrowing in
this work as it is an optimization concern that lets a programmer reuse ancillae in their code. The only
allowed operations on qubits are gate application and measurement.

3.1 Syntax

Figure 2 presents the abstract syntax of λQ#. We divide the grammar into a monadic effectful command
language and a pure expression language (the simply-typed λ -calculus extended with encapsulated com-
mands). We precisely specify the binding structure of the syntax following the notion of abstract binding
trees from Harper’s PFPL [17]. Following the PFPL-syntactic conventions, qref⟨q⟩, gateap⟨U2n⟩(e),
and diagap⟨U2n ,V2n⟩(e1 ; e2) are indexed by symbols [17, Ch. 31] (marked in color) and variadic product
operators are indexed by finite sets, n, where we slightly abuse the notation, n ≜ {1,2, . . . ,n}. We also
use the notation, τn ≜ i ↪→ τi | i ∈ n. Some operators take optional arguments marked by square brackets.
We will often use the concrete syntax in blue color, and some standard derived forms from Harper’s
language MA, shown in Appendix A, wherever there is no possibility of confusion.

The qubit reference type qref⟨q⟩ is a singleton type [3, 20], which is equivalent to ptr(l) in
alias types [51]. Qubit symbols are shown in orange to distinguish them from the usual variables
denoted by the metavariable x; we use qubit symbols to model the underlying logical qubit that the
surface Q# language does not expose. Unitary operations, U (shown in pink), are parametric to the
grammar; similar to Q#, which does not prefer a specific gate set. An n-qubit unitary is typed as
U :

Ś

i∈n(i ↪→ qref⟨qi⟩)→ cmd(unit), where dim(U) = 2n. This type ensures that multi-qubit gates can
be applied only to distinct qubits. The applyU(e) command applies the given unitary operation to a tuple
of unique qubit references, where we follow singleton-tuple equivalence like Q# in case of a single-qubit
unitary. Controlled unitaries can be represented using block diagonals, e.g., CNOT ≜ D(I2,X) and are typed
as D(U,V) :

Ś

i∈n+1(i ↪→ qref⟨qi⟩)→ cmd(unit), where dim(U) = dim(V) = 2n. It is understood that
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Sort Abstract Concrete
Typ τ ::= qref⟨q⟩ qref⟨q⟩ qubit reference

fun(τ1 ; τ2) τ1→ τ2 function
cmd(τ) cmd(τ) command
prod(i ↪→ τi | i ∈ n)

Ś

i∈n(i ↪→ τi) variadic product
bool bool boolean
unit unit unit

Exp e ::= x x variable
let[τ1 ; τ2](e1 ; x . e2) let x be e1 in e2 let binding
λ [τ1 ; τ2](x . e) λ (x . e) function
ap[τ1 ; τ2](e1 ; e2) ap(e1 ; e2) application
cmd[τ](m) cmd(m) encapsulated command
tuple[τn](i ↪→ ei | i ∈ n) ⟨i ↪→ ei | i ∈ n⟩ tuple
proj⟨i⟩[τn](e) e · i projection
true true true
false false false
if[τ](e ; e1 ; e2) if e then e1 else e2 if expression
unit ⟨⟩ unit

Cmd m ::= ret[τ](e) ret(e) return
bnd[τ1 ; τ2](e ; x .m) bnd x← e;m bind
newqref[τ](x .m) new x in m new qubit reference
gateap⟨U2n⟩(e) applyU(e) gate application
diagap⟨U2n ,V2n⟩(e1 ; e2) applyD(U,V)(e1 ; e2) diagonal gate application
meas(e) meas(e) measure

Figure 2: Abstract and concrete syntax of λQ#.

the number of arguments required for both forms of gate application depends on the dimension of the
unitary parameters involved and is enforced by the typing rules.

3.2 Static Semantics

The pure fragment of λQ# is the usual simply-typed λ -calculus, so we will not say much about it here. We
show typing rules for the effectful portion of λQ# in Figure 3.

All of our command typing judgments are parameterized by a signature, Σ, that keeps track of
available qubit symbols in scope and corresponds to the shape of the quantum memory, much like store
shapes3 in the semantics of ALGOL [34, 35, 47]. The intuition behind incorporating a signature is that
the block structure induced by the allocation command changes the shape of the quantum memory under
consideration by making a new qubit available to the program on entry and removing it on exit. This is
the essence of the stack-like treatment of local state.4

Rules CMD-RET and CMD-BND are the two standard rules for monadic return and bind operations.
The other four rules are specific to quantum computation.

The newqref(x .m) command allocates a fresh logical qubit q and immediately makes a reference to
it available in the scope of m. Its typing rule CMD-NEWQREF says that if command m returns a value of

3Store shapes follow laws similar to what are known as lenses in the current literature [9].
4Another view is to think of the commands as being parametrically polymorphic [32, 33] to the store, an idea considered by

Reynolds as early as 1975 [6, 46], even before store shapes. Still, we prefer the signature-based approach taken in Harper’s MA.
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Γ ⊢Σ m∼·· τ (m is a well-formed command relative to Σ, returning a value of type τ)

CMD-RET
Γ ⊢Σ e : τ

Γ ⊢Σ ret(e) ∼·· τ

CMD-BND
Γ ⊢Σ e : cmd(τ)

Γ,x : τ ⊢Σ m ∼·· τ
′

Γ ⊢Σ bnd(e;x.m) ∼·· τ
′

CMD-NEWQREF

Γ,x : qref⟨q⟩ ⊢Σ,q m ∼·· τ

Γ ⊢Σ newqref(x.m) ∼·· τ

CMD-GATEAPREF

Γ ⊢Σ e : prod( i ↪→ qref⟨qi⟩
i∈1..n

)

Γ ⊢Σ gateap⟨U2n⟩(e) ∼·· unit

CMD-DIAGAPREF
Γ ⊢Σ e1 : qref⟨q⟩

Γ ⊢Σ e2 : prod( i ↪→ qref⟨ri⟩
i∈1..n

)

Γ ⊢Σ diagap⟨U2n ,V 2n⟩(e1;e2) ∼·· unit

CMD-MEASREF
Γ ⊢Σ e : qref⟨q⟩

Γ ⊢Σ meas(e) ∼·· bool

Figure 3: Typing of commands. Γ is the standard typing context, and the signature, Σ, keeps track of qubit
symbols in scope. Each qubit symbol is required to be distinct. See other rules in Appendix B.1.

type τ in a context containing x : qref⟨q⟩ and a signature extended with q, then newqref(x .m) returns a
value of type τ . The binding structure ensures that the lifetime of the newly allocated qubit is equal to its
lexical scope, ensuring a strict stack discipline and providing safe and automatic management of qubits.

Rules CMD-GATEAPREF and CMD-DIAGAPREF for unitary operations enforce the constraint that
the input qubit references are distinct. Rule CMD-MEASREF shows how to obtain a boolean value from
an expression that resolves to a qubit reference.

In summary, the allocation command changes the shape of the store (quantum state under considera-
tion), while commands like unitary application and measurement change the store (quantum state).

3.2.1 Safety Properties

We claim that our type system supports two safety properties currently not offered by Q#:
Proposition 1. λQ# supports controlled aliasing and hence, statically enforces the no-cloning theorem for
all unitary operations.

This follows from rules CMD-GATEAPREF and CMD-DIAGAPREF: The premises of both typing rules
require the input qubit references to be unique as all the entries in a tuple are required to be references to
different logical qubits. In the case of the block diagonal, the control qubit reference, e1, is also required
to be distinct from the qubit references in e2.
Example 3.1. The unsafe code fragment from Figure 1b can be written in λQ# syntax as:

newqref(q1 .ret(let(q1 ; q2 .cmd(diagap⟨I2,X2⟩(q1 ; q2)))))

or in the concrete syntax as new q1 in ret(let q2 be q1 in cmd(applyD(I2,X)(q1 ; q2))). Since the type
of the qubit reference in λQ#, qref⟨q⟩, is indexed by the symbolic name of the qubit, we can tell statically
that q1 and q2 reference the same underlying logical qubit. This allows our type system to reject the above
program even though the Q# compiler allows it to pass.
Proposition 2. λQ# statically ensures safe memory management and disallows dangling qubit references.

The allocation command, newqref(x .m), as previously explained, comes with its own binding form,
which ensures that the reference created during allocation can never escape its lexical scope. In rule CMD-
NEWQREF, the fresh logical qubit q allocated during this command is only available in the extended
signature in the premise and not in the conclusion at the end of the command.
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Example 3.2. Using λQ# concrete syntax and the derived forms from Appendix A, the unsafe code
fragment shown in Figure 1a can be written as let NewQubit be proc() { new x in ret(x) } in ⟨⟩. Here,
while ret(x) has type qref⟨q⟩ when q is in the signature, i.e., Γ,x : qref⟨q⟩ ⊢Σ,q ret(x)∼·· qref⟨q⟩; the
conclusion of rule CMD-NEWQREF removes q from scope and renders new x in ret(x) ill-typed, i.e.,
Γ ⊬Σ new x in ret(x)∼·· qref⟨q⟩.

3.3 Dynamic Semantics

As Staton [53, p. 3] suggests, “by giving a fully complete equational theory we can understand quantum
computation from the axioms of the theory without having to turn to denotational models built from
operator algebra”; we rely on his equational theory for quantum local store [53, §6.2] to provide an
equational dynamics for the effectful quantum fragment of λQ#.5 Unlike Staton’s language, our unitary
operations do not return qubits but modify them in place. In this presentation, we use several derived
forms from Appendix A. Specifically, do returns the result of sequential execution of commands. The
program equations assume the availability of a universal gate set.

Interesting Axioms

a : qref⟨q⟩ ⊢ do {applyX(a); meas(a)} ≡ ¬ do {meas(a)} (A)

a : qref⟨q⟩, b :
ą

i∈n
(i ↪→ qref⟨ri⟩) ⊢ {applyD(U,V)(a ; b); meas(a); ret(⟨⟩)} ≡

{x← meas(a); ret(if x then cmd(applyV(b)) else cmd(applyU(b)))} (B)

· ⊢ do {new a in meas(a)} ≡ false (D)

b : qref⟨q⟩ ⊢ do {new a in applyD(U,V)(a ; b)} ≡ do {applyU(b); new a in ret(⟨⟩)} (E)

As mentioned in §2.2, we omit Staton’s axiom (C) because, in the QRAM model, the discard operation
just forgets the name of the reference to a qubit. In Q# and λQ#, we may consider an equivalent behavior:
qubit references are automatically forgotten when they reach the end of their lexical scope. A degenerate
case of axiom (C) (for a 1×1 unitary) holds for both Staton’s theory for a quantum local store and λQ#; it
says that one can ignore the global phase.

Administrative Axioms The following equations correspond to respecting the composition and product
monoidal structure of unitaries:

m1 : cmd(τ1), m2 : cmd(τ2) ⊢ do {new a in new b in m1;applySWAP(a,b); m2} ≡
do {new a in new b in m1;let ⟨b,a⟩ be ⟨a,b⟩ in cmd(m2) (F)

e :
ą

i∈n
(i ↪→ qref⟨qi⟩) ⊢ do {applyI2n (e)} ≡ ⟨⟩ (G)

e :
ą

i∈n
(i ↪→ qref⟨qi⟩) ⊢ do {applyVU(e)} ≡ do {applyU(e);applyV(e)} (H)

e1 :
ą

i∈m
(i ↪→ qref⟨qi⟩),

e2 :
ą

i∈n
(i ↪→ qref⟨ri⟩) ⊢ do {applyU⊗V(e1,e2)} ≡ do {applyU(e1);applyV(e2)} (I)

Selinger [48] notes that the SWAP gate is equivalent to classically renaming qubit references, which
captures the intuition behind equation (F). However, in our case, we have to ensure that the scope of the

5We show the traditional operational semantics in Appendix B.2.
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qubits is limited to our expression (since SWAP is stateful). Axiom (G) says that applying an identity gate
is equivalent to doing nothing. Axioms (H) and (I) show the two ways of composing unitaries—sequential
and tensor products (horizontal and vertical composition, respectively, in circuit notation).

Like Staton, we also state the commutativity equations that hold for λQ#:

a : qref⟨q⟩, b : qref⟨r⟩, m : cmd(τ) ⊢ do {x←meas(a); y←meas(b);m} ≡
do {y←meas(b); x←meas(a);m} (J)

m : cmd(τ) ⊢ do {new a in new b in m} ≡ do {new b in new a in m} (K)

b : qref⟨q⟩, m : cmd(τ) ⊢ do {new a in y←meas(b);m} ≡
do {y←meas(b);new a in m} (L)

Now that we have shown that the quantum portion of λQ# is equivalent to Staton’s quantum program-
ming language [53, §5]6 and corresponding program equations with his theory of quantum local store, we
can restate Staton’s result [53, p. 8, Theorem 11] for our language:

Theorem 1 (Universality of λQ#). For any linear map f : M2n1 ⊕·· ·⊕M2nk →M2p that is completely
positive and unital (i.e. corresponds to a trace-preserving superoperator), there is a λQ# term, t, such that
t implements f .

This corresponds to Staton’s Theorem 11.1 [53], which is a variation on Selinger’s Theorem 6.14 [48].
The proof relies on the correspondence between Staton’s simple quantum language and a fragment of λQ#,
where the translation is straightforward (Appendix C).

Theorem 2 (Completeness). Assuming an axiomatization of unitaries, if two terms t and u have equivalent
interpretation in a common context, Γ, then Γ ⊢ t ≡ u is derivable.

Note that since Q# is parameterized over gate sets, we need an equational theory over unitaries for
λQ#. In the simplest case, we can declare two unitaries equal if their corresponding matrices are equal.
Again, the result follows from Staton’s Theorem 11.2. There are two differences: (1) instead of algebraic
operations, our theorem is stated in terms of generic effects (which correspond directly to programming);
(2) in addition to the equations (A)–(L) stated above, we also need the standard βη-equalities of simply-
typed λ -calculus, which are required because our axioms do not live in isolation but are written as typed
expressions in a context.

4 Translation from Q# to λλλ Q#

We summarize the rules for converting from the supported features of Q# to λQ# in Table 1. For ease of
presentation, we use the derived forms from Appendix A. Figure 4 in Appendix D shows the elaboration
of the Q# teleport example from Listing 1.

Elaboration maintains a context (not shown in Table 1) that stores the logical qubit associated with
each qubit reference. To translate the Q# type Qubit to the λQ# type qref⟨q⟩, we look up the reference
associated with the Qubit type in the context or add a new logical qubit to the context. The use statements
and operation parameters update the context to include a mapping from the new qubit or qubit parameter(s)
to a fresh logical qubit. In Figure 4, a, b, and m are distinct logical qubits introduced by elaboration.

Elaboration performs some type checking to produce well-formed λQ# terms. For example, elaboration
checks that the first argument to a Controlled or Adjoint functor is equipped with the Ctl and/or Adj

6See Appendix C for the trivial term translation.
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Q# Syntax λQ# Translation

[[(τ1, . . . ,τn)]]
Ś

i∈n(i ↪→ [[τi]])
[[τ1 -> τ2]] [[τ1]]→ [[τ2]]
[[τ1 => τ2]] [[τ1]]⇒ [[τ2]]
[[Bool]] and [[Result]] bool
[[Qubit]] qref⟨q⟩
[[Unit]] unit
[[function f (x1 : τ1, . . . ) : τ {e}]] λ [

Ś

i∈n(i ↪→ [[τi]]) ; τ](⟨i ↪→ xi | i ∈ n⟩ . [[e]])
[[operation f (x1 : τ1, . . . ) : τ {s}]] λ [

Ś

i∈n(i ↪→ [[τi]]) ;cmd(τ)](⟨i ↪→ xi | i ∈ n⟩ . [[s]])
[[return e]] ret([[e]])
[[let x = e; . . . ]] let x be [[e]] in [[. . .]]
[[if e { s1 } else { s2 }]] if [[e]] then cmd([[s1]]) else cmd([[s2]])
[[use q = Qubit { s }]] new q in [[s]]
[[Adjoint e1 (e2)]] applyU†([[e2]]), where U = mat([[e1]])
[[Controlled e1 (q, e2)]] applyD(I2n ,U)(q ; [[e2]]), where U = mat([[e1]])

[[e1 (e2)]] [[e1]]([[e2]])
[[(e1, . . . ,en)]] ⟨[[ei]], . . . , [[en]]⟩
[[true]] and [[One]] true
[[false]] and [[Zero]] false

Table 1: Select Q# to λQ# elaboration rules. f , x, and q are variable names, e is a Q# expression, s is a Q#
statement, and τ is a Q# type. [[·]] is the elaboration function and mat(·) converts a λQ# expression to its
corresponding unitary operator. In the rule for Qubit, q is determined from the elaboration context.

characteristics and inlines the corresponding operation specialization, converting it to a unitary operator.
We need to do this during elaboration because we do not yet encode characteristic information or
specializations in λQ#. An adjointable Q# operation with type (Qubit,...,Qubit) => Unit can be converted
into a unitary matrix by composing the unitary representations of its primitive gates. Note that the type
signature and the fact that the operation is adjointable (i.e., no measurement) mean it can be unfolded
to a sequence of primitive gates. We also expand multi-controlled operations (Controlled statements
with a list of controls) into a nested group of single-qubit controlled operations, and expand if-elif-else

expressions into nested if-then-else expressions using ⟨⟩ in place of an empty else block. Finally, we
restrict Q# function bodies to be pure expressions since we do not handle classical mutable values.

As this is our initial attempt to get the foundations right, we do not yet support several Q# features:
namespaces; operation characteristics; custom operation specializations (i.e., implementations of con-
trolled or adjoint variants); general application of the Adjoint and Controlled functors; arrays and slices;
type parameters; base types outside of Bool, Result, and Unit; iteration using for, while, or repeat; and
within-apply blocks (which apply an operation and its adjoint). We say more in §6 about the challenges
involved in supporting some of these features.

5 Related Work

Large Language Definition Efforts In starting this project, we were encouraged by previous efforts
in the formal specification of large programming languages such as Standard ML [19, 27], Java [22],
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JavaScript [15], Rust [23, 24], and, most recently, Go [13]. As we mentioned in §3, we more or less
followed the pioneering methodology of the formalization and mechanization of the definition of Standard
ML [28] by identifying a well-founded core language and performing all metatheoretical reasoning on that
core. These projects demonstrate the extent to which it is possible to distill large and complex languages
into their formal and faithful essence. Java and Go serve as examples of industry-scale languages in mass
use benefiting from formalization and academic study: Extensions such as generics (polymorphism) were
first investigated on smaller cores of the respective languages before being adopted in production over the
years. In the case of JavaScript, perhaps the impact of a careful formal study was even more significant
as JavaScript is the de-facto programming language of the web. We hope our work serves as a similar
playground for extensions and future impact.

Equational Theories Like Staton, we do not focus on the axiomatization of unitaries but of quantum
computation in general. We discuss two similar works here.

Paykin and Zdancewic [39] build upon Staton’s work and present an equational theory for quantum
computation embedded inside homotopy type theory (HoTT) [56]. The essential idea to treat unitaries as
higher inductive paths simplifies the presentation of the equational theory as several axioms can be derived
using the rich structure of HoTT. While their work focuses on embedding a quantum language inside a
highly expressive dependent type theory, we are motivated by practical concerns in defining semantics for
a real-world quantum language.

Peng et al. [40] introduce Non-Idempotent Kleene Algebra (NKAT) to reason about programs alge-
braically. Their language is based on Kozen’s Kleene Algebra with Test (or KAT), which models both
programs and assertions, allowing for a lightweight implementation of a Hoare-style logic [26]. While the
underlying language of regular expressions is not designed for convenience in programming, their use of
NKAT to verify quantum program transformations is a key use case of equational theories and one we
plan to explore in the future.

Linearity and Monadic Quantum Languages Research-oriented languages like QWIRE [38] and
Silq [5] employ a linear type system to enforce the no-cloning theorem. So far, industry languages,
including Q#, have not adopted linear typing. The lack of linear typing in Q# is justified by its monadic
treatment of state. That is, the monad interface imposes a sequential order to manipulate the quantum
state as every monad can be treated as a linear-use state monad [29]. The design decision in Q# to permit
uncontrolled aliasing of qubits for user comfort is the only reason a monadic interface is not enough,
which is addressed by our type system.

Other monadic languages include Quantum IO Monad [2] (QIO) and Quantum Hoare Type Theory [49,
50] (QHTT). QIO is a pioneering monadic interface that isolates quantum effects inside a monad as we do
in λQ#. QHTT is a typed framework that extends the QIO monad with pre- and postconditions so that
precise specifications about the quantum state can be stated and proved in a dependent type theory.

ALGOL-like Quantum Languages The IQu language [37] extends Idealized ALGOL with quantum
circuits and quantum variables, much as we extend Harper’s Modernized Algol (MA). Like λQ#, IQu uses
references to access qubits and therefore does not need a linear type system to prevent cloning. Though
every newly allocated qubit is unique, IQu does not have a way to guarantee that multiple references to
the same qubit are not passed to a single operation. Instead, IQu’s use of Idealized ALGOL is focused on
programmability, following a design philosophy similar to that of Q#. IQu allows programmers to write
the classical parts of their programs in a familiar way while providing access to the quantum state.
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6 Conclusion and Perspectives

We present a core calculus for the Q# programming language, dubbed λQ#. We maintain a separation
between the quantum effectful and the pure expression sub-languages, expose the monadic nature of
computation inherent in Q#, make qubit aliasing and block structure explicit, and present an equational
semantics for λQ#, building upon Staton’s fully complete equational theory for quantum computation.

A formal specification of the whole Q# language still requires more work. Some extensions are
straightforward; e.g., classical mutable bindings in Q# can be modeled after assignables in Harper’s MA;
conveniently, they follow the model of classical local store analogous to how we modeled the quantum
local store in this paper. Here it helps that Q# does not allow references to any types other than qubits.
Other features are more challenging, including arrays, slices, iteration, polymorphism, and patterns like
within-apply and repeat-until-success [36]. Then there is the question of how to treat operations that have
specializations supplied by the programmer versus those auto-generated by the Q# compiler (which is not
known statically); we may need to consider a phase distinction [18] here to distinguish between what can
be derived statically using types and what requires inspecting the code.

We plan to gain confidence in our formalization by mechanizing its metatheory. We see potential
in recent developments such as the Agda-based formalization of Second-Order Abstract Syntax [8],
which lets users concisely specify algebraic theories such as Staton’s and significantly reduces the
boilerplate code required to state interesting theorems about the theory. However, this tool does not
support substructural assumptions on qubit symbols, making our proposed extension a nontrivial prospect.

A major goal of this project is to form a playground for prototyping extensions to the Q# type system.
For instance, a peculiar decision in Q# is to allow uncontrolled aliasing of qubits to support user-friendly
features such as qubit arrays. While convenient, reasoning about interference freedom for arrays is
notoriously hard; specifically, our approach to enforce no-cloning inspired by alias types [51, 58] does
not easily scale to arrays [57, §3.5.1]. We are extending our λQ# type checker with a constraint solver
to evaluate potential solutions for scenarios that occur in practice in Q# library code. Depending on the
complexity of the array indexing used in practice, we may use a natural number inequality checker, a
simple symbolic numerical solver, or a full-fledged SMT solver like Z3 [30] to guarantee qubit distinctness.

We could also statically check Q#’s Adj and Ctl characteristics for validity. In the simplest case, we
would flag operations as unitary or non-unitary in order to inform the compiler when adjoints and controls
can be trivially synthesized, in the manner of Silq [5]. However, more complex programs are adjointable
and controllable in practice, which may require a more sophisticated approach.

One of our insights from this project is that even though quantum computation is a fundamentally
new abstraction, many classical techniques from programming languages and compilers communities
can be adapted to the quantum setting [54]. Q# and its Quantum Development Kit (QDK) are significant
examples of realizing that vision [1]. As a high-level programming language, Q# must also compile to
efficient, low-level machine instructions. Recently, Microsoft announced QIR, a Quantum Intermediate
Representation based on the popular LLVM framework [12], which has gained significant industry backing
in the form of the QIR Alliance [44]. This provides an exciting avenue for future development. We
plan to explore semantics-preserving compilation from Q# to QIR using our formalization. This project
will require formally specifying the semantics of QIR, for which we will draw upon the Verified LLVM
(Vellvm) project [60]. We also aim to formalize QIR’s profiles, which specify what kinds of quantum
operations are allowed on a given quantum architecture. This, along with our current work, will constitute
a significant step toward our broader vision of a fully verified quantum stack [45].
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assignables [17, §34.3], we only have a single type of qubit symbols, which we hence do not annotate in
the signature, Σ, i.e., the signature only contains active qubit symbols in scope and nothing else. Further,
since there are no reference types [17, Ch. 35] except for a single qubit reference type, we do not explicitly
state any mobility conditions [17, §31.1]. Under scoped dynamics, qubit references are immobile [17,
§35.2]. This mobility restriction is crucial in ensuring the stack discipline for qubit management.

B.1 Type System

We provide the most interesting rules of our type system in Figure 3. We include the following rules here
for completeness.

Γ ⊢ e : τ (Expression e has type τ in context Γ)

TY-VAR

Γ,x : τ ⊢ x : τ

TY-LET
Γ ⊢ e1 : τ1

Γ,x : τ1 ⊢ e2 : τ2

Γ ⊢ let(e1;x.e2) : τ2

TY-LAM
Γ,x : τ1 ⊢ e : τ2

Γ ⊢ λ {τ1}(x.e) : fun(τ1;τ2)

TY-AP
Γ ⊢ e1 : fun(τ2;τ)

Γ ⊢ e2 : τ2

Γ ⊢ ap(e1;e2) : τ

TY-PR

Γ ⊢ e : prod( i ↪→ τ i
i∈1..n

)
1≤ i≤ n

Γ ⊢ proj⟨i⟩(e) : τ i

TY-TPL

Γ ⊢ ei : τ i
i∈1..n

Γ ⊢ tuple( i ↪→ ei
i∈1..n

) : prod( i ↪→ τ i
i∈1..n

)

In rule TYS-QLOC and rule VS-QLOC in the next subsection, qloc[q] is the value of the reference to
an active qubit symbol q. It can be thought of as a classical pointer value indexed by a qubit symbol. The
signature plays a role wherever commands or qubits are involved.

Γ ⊢Σ e : τ (Expression e has type τ relative to the signature)

TYS-CMD
Γ ⊢Σ m ∼·· τ

Γ ⊢Σ cmd(m) : cmd(τ)

TYS-QLOC

Γ ⊢Σ,q qloc⟨q⟩ : qref⟨q⟩

B.2 Operations Semantics

Pure Classical Sub-language

e val (e is a value)

V-LAM

λ {τ}(x.e)val

V-TPL

ei val
i∈1..n

tuple( i ↪→ ei
i∈1..n

)val
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e 7−→ e′ (e steps to e′)

TR-LET
e1 7−→ e′1

let(e1;x.e2) 7−→ let(e′1;x.e2)

TR-LETINSTR
e1 val

let(e1;x.e2) 7−→ [e1/x]e2

TR-APL
e1 7−→ e′1

ap(e1;e2) 7−→ ap(e′1;e2)

TR-APR
e1 val e2 7−→ e′2

ap(e1;e2) 7−→ ap(e1;e′2)

TR-APINSTR
e2 val

ap(λ {τ2}(x.e1);e2) 7−→ [e2/x]e1

TR-TPL

ei val
i∈1..na e 7−→ e′

tuple( i ↪→ ei
i∈1..na ,k ↪→ e, j ↪→ e′j

j∈1..nb
) 7−→ tuple( i ↪→ ei

i∈1..na ,k ↪→ e′, j ↪→ e′j
j∈1..nb

)

TR-PR
e 7−→ e′

proj⟨i⟩(e) 7−→ proj⟨i⟩(e′)

TR-PRINSTR

tuple( i ↪→ ei
i∈1..n

)val
1≤ j≤ n

proj⟨j⟩(tuple( i ↪→ ei
i∈1..n

)) 7−→ ej

e valΣ (e is a value relative to Σ)

VS-CMD

cmd(m) valΣ

VS-QLOC

qloc⟨q⟩ valΣ,q

Effectful Quantum Sublanguage In the following rules, we do not show the quantum store, preferring
the equational dynamics shown in §3.3. In reading these rules, consider the quantum store shape being
expanded and restored during the allocation command (as reflected in the signature) and the quantum
state being modified during the measurement and the gate application commands.

m finalΣ (Command m is complete)

FN-RET
e valΣ

ret(e) finalΣ

m 7−→Σ m′ (Command m steps to m′)

ST-RET
e 7−→

Σ
e′

ret(e) 7−→
Σ

ret(e′)

ST-BND
e 7−→

Σ
e′

bnd(e;x.m) 7−→
Σ

bnd(e′;x.m)

ST-BNDINSTR
e valΣ

bnd(cmd(ret(e));x.m) 7−→
Σ

[e/x]m

ST-BNDCMD
m1 7−→

Σ
m′1

bnd(cmd(m1);x.m2) 7−→
Σ

bnd(cmd(m′1);x.m2)

ST-NEWQREF

m 7−→
Σ,q

m′

newqref(x.m) 7−→
Σ

newqref(x.m′)
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ST-NEWQREFINSTR

e valΣ

newqref(x.ret(e)) 7−→
Σ

ret(e)

ST-GATEAPREF
e 7−→

Σ
e′

gateap⟨U2n⟩(e) 7−→
Σ

gateap⟨U2n⟩(e′)

ST-DIAGAPREFL
e1 7−→

Σ
e′1

diagap⟨U2n ,V 2n⟩(e1;e2) 7−→
Σ

diagap⟨U2n ,V 2n⟩(e′1;e2)

ST-DIAGAPREFR
e1 valΣ e2 7−→

Σ
e′2

diagap⟨U2n ,V 2n⟩(e1;e2) 7−→
Σ

diagap⟨U2n ,V 2n⟩(e1;e′2)

ST-MEASREF
e 7−→

Σ
e′

meas(e) 7−→
Σ

meas(e′)

C Correspondence between λλλ Q# and Staton’s quantum language

We can easily translate the quantum-specific fragment of λQ# to Staton’s quantum programming lan-
guage [53, §5]. Note that the generic effects of his quantum language are equivalent to the algebraic
operations (of the algebraic theory) [42] that he uses in his proof of Theorem 11 [53, pp. 12–15, Appendix
A]. The translation follows:

let q = new() in m ≡ newqref(q .m)

measure(e) ≡ meas(e)

applyU(e) ≡ gateap⟨U2n⟩(e)

Note that gateap⟨U2n⟩(e) subsumes diagap⟨U2n ,V2n⟩(e1 ; e2), just like in Staton’s work. In other
words, we can define each of Staton’s terms using terms of our language.

D An Elaboration Example

Listing 1 shows a sample Q# program. Figure 4 shows the corresponding elaboration to λQ#.
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namespace Quantum.Kata.Teleportation {

open Microsoft.Quantum.Intrinsic; // for H, X, Z, CNOT , and M

operation Entangle (qAlice : Qubit , qBob : Qubit) : Unit is Adj {
H(qAlice );
CNOT(qAlice , qBob);

}

operation SendMsg (qAlice : Qubit , qMsg : Qubit) : (Bool , Bool) {
CNOT(qMsg , qAlice );
H(qMsg);
return (M(qMsg) == One , M(qAlice) == One);

}

operation DecodeMsg (qBob : Qubit , (b1 : Bool , b2 : Bool)) : Unit {
if b1 { Z(qBob); }
if b2 { X(qBob); }

}

operation Teleport (qAlice : Qubit , qBob : Qubit , qMsg : Qubit) : Unit {
Entangle(qAlice , qBob);
let classicalBits = SendMsg(qAlice , qMsg);
DecodeMsg(qBob , classicalBits );

}
}

Listing 1: Teleportation in Q# (adapted from Quantum Katas [31]).

let Entangle be proc (⟨qAlice,qBob⟩ : qref⟨a⟩×qref⟨b⟩) {
applyH(qAlice);

applyD(I2,X)(qAlice ; qBob)} in
let SendMsg be proc (⟨qAlice,qMsg⟩ : qref⟨a⟩×qref⟨m⟩) {

applyD(I2,X)(qMsg ; qAlice);

applyH(qMsg);

ret(⟨cmd(meas(qMsg)),cmd(meas(qAlice))⟩)} in
let DecodeMsg be proc (⟨qBob,⟨b1,b2⟩⟩ : qref⟨b⟩× (bool×bool)) {

if b1 then applyZ(qBob) else⟨⟩;
if b2 then applyX(qBob) else⟨⟩} in

let Teleport be proc (⟨qAlice,qBob,qMsg⟩ : qref⟨a⟩×qref⟨b⟩×qref⟨m⟩) {
call Entangle(⟨qAlice,qBob⟩);
classicalBits ← call SendMsg(⟨qAlice,qMsg⟩);
call DecodeMsg(⟨qBob,classicalBits⟩)} in ⟨⟩

Figure 4: λQ# elaboration of the Q# program in Listing 1.


	1 Introduction
	2 Background
	2.1 The Q# Programming Language
	2.2 An Equational Theory for QRAM

	3 λ-Q#: A Core Calculus for Q#
	3.1 Syntax
	3.2 Static Semantics
	3.2.1 Safety Properties

	3.3 Dynamic Semantics

	4 Translation from Q# to λ-Q#
	5 Related Work
	6 Conclusion and Perspectives
	Acknowledgments
	References
	A Derived Forms
	B Remaining Static and Dynamic Rules
	B.1 Type System
	B.2 Operations Semantics

	C Correspondence between λ-Q# and Staton's quantum language
	D An Elaboration Example

