
Submitted to:
QPL 2022

© T. Stollenwerk & S. Hadfield

Diagrammatic Analysis for Parameterized Quantum Circuits

Tobias Stollenwerk
German Aerospace Center (DLR), Linder Höhe, 51147 Cologne, Germany

Institute for Quantum Computing Analytics (PGI-12), Jülich Research Centre, Wilhelm-Johnen-Straße, 52428 Jülich, Germany

tobias.stollenwerk@dlr.de

Stuart Hadfield
Quantum Artificial Intelligence Lab (QuAIL), NASA Ames Research Center, Moffett Field, CA 94035, USA

USRA Research Institute for Advanced Computer Science (RIACS), Mountain View, CA 94043, USA

stuart.hadfield@nasa.gov

Diagrammatic representations of quantum algorithms and circuits offer novel approaches to their
design and analysis. In this work, we describe extensions of the ZX-calculus especially suitable
for parameterized quantum circuits, in particular for computing observable expectation values as
functions of or for fixed parameters, which are important algorithmic quantities in a variety of ap-
plications ranging from combinatorial optimization to quantum chemistry. We provide several new
ZX-diagram rewrite rules and generalizations for this setting. In particular, we give formal rules for
dealing with linear combinations of ZX-diagrams, where the relative complex-valued scale factors
of each diagram must be kept track of, in contrast to most previously studied single-diagram realiza-
tions where these coefficients can be effectively ignored. This allows us to directly import a number
useful relations from the operator analysis to ZX-calculus setting, including causal cone and quan-
tum gate commutation rules. We demonstrate that the diagrammatic approach offers useful insights
into algorithm structure and performance by considering several ansätze from the literature including
realizations of hardware-efficient ansätze and QAOA. We find that by employing a diagrammatic rep-
resentation, calculations across different ansätze can become more intuitive and potentially easier to
approach systematically than by alternative means. Finally, we outline how diagrammatic approaches
may aid in the design and study of new and more effective quantum circuit ansätze.

1 Introduction

Diagrammatic approaches to quantum mechanics [9, 13, 12] have gained much attention in recent years
as an advantageous alternative approach to analyzing and understanding quantum systems, providing
simpler intuition and in some cases improved algorithmic approaches. These methods provide straight-
forward rules for representing, manipulating, and simplifying quantum objects, while at the same time are
underpinned by sophisticated mathematical ideas (in particular, category theory [1, 55]). An important
example is the ZX-calculus [9, 10, 55] and its closely related variants [43, 51, 31, 35, 32, 3, 20] which
have seen a number of successful applications in quantum computing, ranging from circuit optimiza-
tion [19, 37, 4, 25] and synthesis [15, 26], to algorithm analysis [7, 49], natural language processing [11]
and machine learning [57, 48, 58], among others.

In this paper we show how the ZX-calculus is also useful for analyzing algorithms based on param-
eterized quantum circuits (PQCs), such as variational quantum algorithms, in particular for calculating
important derived quantities such as expectation values of quantum observables, or their gradients. Such
quantities may be computed as functions of the circuit parameters, in which case the parameters are
symbolically carried through subsequent ZX-diagrams, or as numbers for the case of fixed parameters
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of interest. To enable this, we present several new ZX-rules generalizing the standard ones appearing
in the literature; in particular, we present rules and notation for explicitly handling linear combinations
of ZX-diagrams which naturally arise, for example, when incorporating commutation rules for unitary
operators which are used for instance in computing expectation values. For linear combination of dia-
grams, clearly, it is critical to keep track of the scalar multiplier of each diagram, whereas in previous
single-diagram applications such global phases or normalization constants can typically be ignored. In
our application these multipliers will typically be complex-valued functions of the quantum circuit pa-
rameters. Furthermore, our formalism then allows direct importation of a number of useful relations
from the operator analysis to ZX calculus setting, such as causal cone and operator commutation rules,
among others.

After stating the new rules we demonstrate their efficacy with several prototypical examples of pa-
rameterized quantum circuits in the context of combinatorial optimization, including straightforward
derivation of some new and existing results concerning example circuits drawn from the literature. While
for computing expectation values of relatively shallow circuits we are able to show most of the key dia-
gram reduction steps explicitly, for deeper circuits our approach can be aided by integration with software
implementations of the ZX-calculus (e.g., [38, 36]). Though we focus on the common task of analyz-
ing quantum circuit expectation values, important in particular for assessing algorithm performance, our
proposed rules are general and may find much broader application in future work. For instance, toward
analyzing phenomena related to parameter setting, expectation value gradients may be obtained either
by differentiating directly [48], or by reducing the calculation to that of computing further circuit expec-
tation values as in parameter shift rules [17, 56]. We emphasize that our approach may be applied to a
wide variety of application problems and related quantum circuits beyond those explicitly considered in
our examples, and further ZX results and generalizations from the literature may be leveraged, including
extensions to qudits [51] or fermions [32, 16], among others.

2 Preliminaries

2.1 ZX-Calculus

We refer the reader to [50, 55] and the references therein for comprehensive introductions, including
complete sets of graphical rewrite rules as well as their mathematical details. A number of the most
important ZX-diagram rewrite rules are displayed in Figure 1. We use the label attached to each equation
to reference these rules when we apply them in the examples we consider below.

2.2 Parameterized Quantum Circuits

Parameterized quantum circuits (PQC) have gained much attention in recent years, in particular as heuris-
tic approaches suitable for NISQ [42] era devices that are classically optimized (often variationally) as
part of a hybrid protocol, though we emphasize they are by no means restricted to this setting; see [8, 5]
for reviews of recent developments. Two particular approaches of interest are the QAOA (quantum al-
ternating operator ansatz [29], which generalizes the quantum approximate optimization algorithm [22])
and VQE (variational quantum eigensolver [41, 40]) paradigms, as well as a number of more recent
variants of these approaches. Here we briefly review the original QAOA paradigm and its application
to combinatorial optimization, though our results to follow may be applied more generally to a variety
of problems and algorithms. In QAOA we are given a cost function c(x) and corresponding classical
Hamiltonian C (i.e., diagonal in the computational basis, C |x⟩ = c(x) |x⟩) we seek to optimize over bit
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Figure 1: The ZX-diagram rewrite rules (cf. for example [55] or [58]). Note the explicit scalar factors.

strings x ∈ {0,1}n. A QAOAp circuit consists of 2p alternating layers specified by 2p angles γi,βi in
some domain (e.g. [−π,π]) to create the state

|γγγβββ ⟩=UM(βp)UP(γp) . . .UM(β1)UP(γ1) |s⟩ ,

for phase operator UP(γ) = exp(−iγC), (transverse-field) mixing operator UM(β ) = exp(−iβB) where
B = ∑n

i=1 Xi, and standard initial product state |s⟩ = |+⟩⊗n. The state is then measured in the computa-
tional basis which returns some y ∈ {0,1}n achieving cost c(y). Figure 2 shows a simple example of a
QAOA circuit. Repeated state preparation and measurement gives further samples which may be used to

|0⟩ . . . . . .

|0⟩ . . . . . .

|0⟩ . . . . . .

H RX(β )

H RZ(γ) RX(β )

H RZ(γ) RX(β )

Figure 2: Example of a parameterized quantum circuit: QAOA on 3 qubits. Here the phase and mixing
operators as well as initial state preparation have been compiled to basic quantum gates.

estimate the cost expectation ⟨C⟩p or other important quantities. These quantities may be used to update
or search for better circuit parameters if desired; we emphasize that in different cases parameters may be
found through analytic [53], numeric [22], or average-case [47] techniques, or, distinctly, searched for
empirically (e.g., variationally). After a set number of runs overall, or when other suitable termination
criteria has been reached, the best solution found is returned.

A fundamentally important quantity for QAOA as well as related approaches is the cost expectation
value ⟨C⟩, which may be computed for a single instance or over a suitable class, and can be used to
bound the expected approximation ratio achieved [22, 30, 29, 28] for the given problem. Importantly,
we are often given a decomposition of the cost Hamiltonian such as C = ∑ j C j which we may exploit in
computing ⟨C⟩ = ∑ j⟨C j⟩ as a sum of terms (typically, a linear combination of Pauli Z operators [27]),
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which directly motivates the rules we introduce for accommodating linear combinations of ZX-diagrams.
For combinatorial optimization the C j terms mutually commute which leads to further simplifications,
whereas this may not be true for more general problems and applications such as quantum chemistry
(though linearity of expectation still applies). In general, many quantities of interest for PQCs can be
expressed as expectation values and are hence amenable to similar analysis via diagrammatic techniques
as we explore below.

2.3 Related Work

Several recent papers provide related but distinct results towards applying the ZX calculus in the PQC
setting. In particular, three papers [48, 52, 34] which appeared during preparation of this work that
consider differentiation and addition of ZX-diagrams. These papers introduce diagrammatic extensions
complementary to our results. However they do not deal with expectation values explicitly which is
the focus of this work. In terms of previous applications to variational quantum algorithms, a recent
paper [58] considers using the ZX-calculus for computing and analyzing expectation values of deriva-
tives of the cost expectation for particular classes of random parameterized quantum circuits built from
particular gate sets (see in particular [58, Assumption 1]), in the context of detecting possible barren
plateaus [39]. Our work differs in that we consider expectation values of the cost function themselves,
and make no similar assumption of randomly selected parameters. A particular similarity with [58] is
both their application and ours require explicit accounting of scalar factors associated to ZX-diagrams
(see Section 3). However, while it is observed in [58, Eq. 7] that quantum expectation values may repre-
sented with the ZX-calculus in [58, Eq. 7], the authors do not apply the decomposition C = ∑ j C j, which
we exploit to derive novel ZX rules and analysis. Our approach and results are complementary to those
of [58]. Another work [23] applied ZX-calculus in analysis of symmetries in the parameter landscape of
the cost function expectation. We note that a different diagrammatic approach to constructing parame-
terized quantum circuits is considered in [33]. Concepts related to linear combinations of ZX-diagrams
have been discussed in the framework of category theory for example in [14, 18].

3 ZX-Calculus for Parameterized Quantum Circuits

In this section we extend the ZX-calculus to accommodate linear combinations of (conventional) ZX-
diagrams. Then, toward its application to parameterized quantum circuits we derive a collection of gen-
eral rules and useful identities within the new framework. We will apply these rules to several concrete
quantum circuit examples in Section 4 and the Appendices.

3.1 Diagrammatic Rules for Linear Combinations

Here we define linear combinations of diagrams, in which case diagram constants give the relative
weights of the sum. For example, for computing the expectation value of an observable H = ∑m

j=1 a jH j

for some quantum circuit state |ψ⟩ = U |ψ0⟩ we have ⟨H⟩ψ = ∑m
j=1 a j⟨H j⟩ψ , which hence corresponds

to a single ZX-diagram or equivalently to a sum of m weighted diagrams. This idea generalizes in the
natural way to sums of linear maps and more general ZX objects. We also show new ZX-diagram rules
which relate single (sub)diagrams to sums or products of (sub)diagrams, such that the resulting diagram
reductions involve differing numbers of diagrams.

As mentioned, we do not use the common convention of considering diagrams equivalent up to
scalars or phases; hence we include complex scalar multipliers explicitly in our diagrams and rules to
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follow, i.e.,

a · ...m ... nA ̸= b · ...m ... nA unless a = b ,

where a,b are complex scalar multipliers and the diagram is a placeholder for an arbitrary ZX-diagram
with m inputs and n outputs. In particular, care must be taken in applying the usual rules of ZX-calculus
to account for any implicit constant factors. We note that scalar factors are also retained in the distinct
application of [58]; see [58, Fig. 4] for an example list of some ZX-diagram rewrite rules with explicit
scalars.

Definition 3.1 (Sum notation). We define novel diagram notation for describing arbitrary linear combi-
nations. The linear combination of two ZX-diagrams with m inputs and n outputs is written

a · ...m ... nA + b · ...m ... nB =: Σ

Σ

...m ... nA

...m ... nB

a

b

...m ... n . (1)

Each summand is written inside a bubble and the scalar factors are written on the line combining
the new summation symbol and the bubbles. This definition naturally extends to an arbitrary number of
summands. Summand diagrams are required have the same numbers of input (m) and output (n) lines
as each other and as the those of the sum object. Note that m or n are zero for diagrams representing
states (m = 0), effects (n = 0), or constants (m = n = 0). Sums of diagrams also arise in [57, 48, 58]
in the context of differentiating diagram components (where sums arise, for example, from the product
rule of calculus). Our work is complementary to these results in that we consider the generalization to
complex linear combinations of diagrams; extensions to scalars beyond the complex numbers are also
possible [48].

3.1.1 Rules

Now we state the two rules needed for the extension of ZX-calculus to linear combinations.

1. Diagram Pull Rule

The first rule applies if diagrams in a linear combination are equal up to a certain subdiagram
(A and B below). Then we can write a single diagram containing the linear combination of the
beforementioned subdiagrams

a · ...ℓ

... n...m

... k

A

...p

+b · ...ℓ

... n...m

... k

B

...p
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(1)
= Σ

Σ

...ℓ

... n...m

... k

A

...p

...ℓ

... n...m

... k

B

...p

a

b

...ℓ
... k

=

...ℓ ...m ... nA

...m ... nB

a

b

... n...m

... k

...p

. (i)

The last equality we call the diagram pull rule. This also holds if any of the ℓ, p, k, m, n vanish.
Thus describing how to pull scalars, effects and states in and out of the bubbles. If p = 0, the rule
describes how to pull in and out diagrams only from the left or only from the right. We will make
heavy use of this in Section 4.

2. Product (Composition) Rule

The second rule describes how to combine products (i.e., compositions) of linear combinations of
diagrams. We state the rule for a product of two linear combinations comprised of two summands
each

(
a · ...m ... nA + b · ...m ... nB

)
◦
(

c · ...n ... ℓC + d · ...n ... ℓD
)
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= Σ

Σ

...m ... nA

...m ... nB

a

b

...m ... n ◦ Σ

Σ

...n ... ℓC

...n ... ℓD

c

d

...n ... l

= Σ

Σ

...m A
...

... ℓC

...m A
...

... ℓD

...m B
...

... ℓC

...m B
...

... ℓD

ac

ad

bc

bd

...m ... ℓ . (ii)

The product rule extends in the obvious way to the case of more than two factors or summands.
Several additional rules are given in Appendix A.

3.2 ZX-Calculus for Expectation Values of Quantum Circuits

In this section, we will present various identities within the extended ZX-calculus framework, that are
useful for the analysis of parameterized quantum circuits. While we primarily consider Pauli operators
here, similar results may derived in different basis or gate sets. See [16] for some additional useful rules
regarding Pauli operator exponentials.

3.2.1 Rotations

First, we can write rotation operators in terms of linear combinations of Clifford gates

eiγZ = eiγ −2γ = Σ

Σ

π

cγ

isγ

, (5)

eiβX = eiβ −2β = Σ

Σ

π

cβ

isβ

. (6)

In both cases the proof easily follows from the identity eiαA = cosαI + i sinαA for operators satisfying
A2 = I. We use cα := cos(α) and sα := sin(α) throughout.
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3.2.2 Phase-Gadgets

Important for parameterized quantum circuits are multi-qubit rotations, so-called phase-gadgets (cf. [16]),
for example

eiγZuZv =
√

2eiγ −2γ = Σ

Σ

π

π

cγ

isγ

u
v . (7)

A proof of the first equality is given in [16, Corollary 3.4]. The second equality is derived similarly to
(5), (6). In particular, for the analysis of QAOA expectation values, we will encounter conjugates of
phase-gadgets in conjunction with π-X-spiders. We will make heavy use of the following identity which
is proven in Appendix D.1.

. . . . . .
tπ

−γ ℓπ rπ γ

bπ
. . . . . .

=

eiγ√
2

. . . . . .
(t+r)π rπ

−2γ

(b+1)π π
. . . . . .

1
2

. . . . . .
tπ

bπ
. . . . . .

if (t + l +b+ r) odd

if (t + l +b+ r) even

. (8)

Phase-gadgets can be combined to implement so-called phase polynomials, i.e., parameterized expo-
nentials of diagonal Hamiltonians such as utilized in QAOA circuits [26, 16, 29, 27].

3.2.3 Lightcones

For quantum circuits of limited depth or connectivity, it is often the case when computing a particular
quantity that a significant fraction of the gates and qubits can be ignored or discarded due to having
no effect, in analogy with spacelike-separated events in relativity. Naturally, the same principle may be
fruitfully applied to diagrammatic analysis.

Given an observable C = ∑ j C j, typically each C j acts nontrivially on a subset of ℓ < n qubits. Hence,
depending on the structure of the problem and given quantum circuit ansatz U |ψ0⟩, the n-qubit expecta-
tion values ⟨C j⟩ may be equivalently reduced to ones over L qubits, ℓ≤ L ≤ n, by in each case restricting
the quantum circuit in the natural way. This phenomena is generally known as the lightcone or causal
cone rule [21, 22, 47, 28], and is clearly exhibited with the ZX-calculus. For example, if |ψ0⟩ is a product
state and U consists of only 1-local gates, then L = ℓ independently of the circuit depth (cf. the example
of Section 4.1). For QAOA applied to MaxCut, ℓ= 2 and it is easily shown that the lightcone after each
qth QAOA layer consists of the restriction to the subgraph within distance q of the given edge [22, 28],
i.e., its size L depends on the vertex degrees in the graph neighborhood. Hence, importantly, for QAOA
or similar layered ansatz we may apply the lightcone rule layer-by-layer. Applying this restriction, the
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inner operator for a MaxCut QAOA expectation value reads

O p
uv :=

p

∏
ℓ=1

eiγℓCeiβ̃ℓB ZuZv

1

∏
k=p

e−iβ̃kBe−iγkC

=

...M p
uv

...N p
uv

...N p−1
uv

...
...

...N 1
uv

v

u

9γ1 9β1

· · ·

· · ·

· · ·

· · ·

9γp 9βp
π

π

...

βp γp
· · ·

· · ·

· · ·

· · ·
β1 γ1

...

...

...

...

...

, (9)

where we used placeholder diagrams for the reduced phase-separation layer

NL

L

...

...

...

...

...

...

...

...

...

...

...

...
γ

:=
√

2
nL

...

...

...

...

...

...

γ

...

· · ·

· · ·
γ

γ ∈ L×L∩E

· · ·

· · ·

· · ·

γ

· · ·

γ

· · · γ

γ

· · ·

· · ·

γ

γ

· · ·

· · ·

· · ·
...

γ

γ

· · ·

· · ·

· · ·

· · ·

γ

γ

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
· · ·

γ

...

...

...

...

...

...

, (10)

and the reduced mixing layer

...
...β :=

92β̃

...

92β̃

=

β

...

β

(11)

where β :=−2β̃ for convenience. For the reduced phase-separation layer we have used the MaxCut cost
function Hamiltonian C = 1

2 ∑uv∈E (1−ZuZv) and

eiγC = ∏
(u,v)∈E

e
iγ
2 e

−iγ
2 ZuZv (7)

=
√

2
|E| ∏

(u,v)∈E

u
γ

v
.
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This leads to the factor
√

2
nL in (10), where nL is the number of phase-gadgets in the right diagram

of (10). Also, we implicitly used the neighborhood of a set of nodes L, NL :=
⋃

ℓ∈L nbhd(ℓ), the exclusive
p-th neighborhood of {u,v}, recursively defined by

N p
uv :=

⋃
i, j∈N p−1

uv ×N p−1
uv ∩E

N{i, j} \∪p−1
k=0 N k

uv ,

where N 0
uv := {u,v}, as well as the complement M p

uv = N p
uv \E.

While here we have considered QAOA circuits as a demonstrative example, the same principle may
be applied to or formalized for more general ansätze and observables.

4 Application to Combinatorial Optimization

Expectation values of quantum circuit observables – i.e., constants – may be represented with ZX-
diagrams, as has been previously observed in [58, Eq. 7]. In doing so, in some cases the structure
of the original problem may be directly reflected in the structure of the corresponding ZX-diagrams.
This is demonstrated by two examples in this section, in which apply our ZX-calculus extension to cal-
culate cost expectation values for a particular ansatz for combinatorial optimization. The purpose of this
section is twofold. First, we want to demonstrate that calculations with parameterized quantum circuits,
like the finding an analytical expression for expectation values, can sometimes become more intuitive
and simplified by using ZX-calculus in conjunction with our extension to linear combinations. Second,
we show that our extension is indeed necessary to achieve the aforementioned task diagrammatically by,
for instance, providing means to “commute” X- and Z-spiders (cf. (12)), while explicitly keeping track
of all resulting terms.

We show how the cost function expectation value ⟨C⟩ may be computed and analyzed using our
extended ZX-calculus. Recall that given a decomposition of the cost Hamiltonian C = ∑Cℓ it suffices
to compute the ⟨Cℓ⟩ values independently, which typically correspond to similar diagrams. In particular
(sub)graph symmetry can be exploited to reduced the number of unique diagrams required [22, 44, 45].
Generally the quantity ⟨C⟩ is important in parameter setting, as well as bounding algorithm performance
such as the approximation ratio achieved [30].

4.1 Independent Single-Qubit Rotations Ansatz

We begin with a simple but important example. Consider an arbitrary cost function and corresponding
cost (diagonal) Hamiltonian C on n qubits we seek to extremize, together with the simple depth-1 ansatz
consisting of a free single-qubit Pauli-Y rotation on each qubit, applied to the initial state |00 . . .0⟩ =
|0⟩⊗n,

...
...

|0⟩ RY (α1)

|0⟩ RY (α2)

|0⟩ RY (αn)

=
1√
2n

9 π
2 α π

2

9 π
2 α π

2

...
...

9 π
2 α π

2

.

For example, consider an arbitrary instance of MaxCut, a prototypical NP-hard optimization problem,
though the same argument we show here applies similarly to many other problems. For a graph with edge
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set E the cost Hamiltonian is C = |E|
2 − 1

2 ∑(uv)∈E ZuZv. As demonstrated in Equation (12) the derivation
of each ⟨ZuZv⟩ becomes very simple with ZX-calculus.

9 π
2 αu π 9αu

π
2

9 π
2 αv π 9αv

π
2

...
⟨ZuZv⟩ = 1

2n = cαucαv

π
2 92αu

π
2eiαu=

( fff ) (πππ)

π
2 Σ

Σ π
2

π

cαu

isαu

=

(6)

Σ

Σ

π
2 π π

2

cαu

isαu

= 0

= = 2cαu

. (12)

Here, again, sα = sin(α) and cα = cos(α), and each underbrace used refers only to the subdiagram
directly above. Note that after the second step the usage of linear combinations to handle the X-spider
with phase (−2αu) provides a way to continue the calculation, which would not be possible within the
conventional ZX-framework. From the permutation symmetry of the ansatz, the expectation value ⟨ZiZ j⟩
of each edge is of the same form [44]. Hence we have

⟨C⟩= |E|
2 − 1

2 ∑
(u,v)∈E

cos(αu)cos(αv), (13)

which implies
max

α
⟨C⟩= max

α∈{0,π}n
⟨C⟩= max

x
c(x) = c(y∗),

where we have used the observation that angles α∗ ∈{0,π}n encode a bit string y∗ via y∗i =
1
2 − 1

2 cos(α∗
i ).

Hence, as any globally optimal angles must directly encode an optimal solution to the MaxCut instance,
the expectation value ⟨C⟩ is NP-hard to optimize. Indeed, for MaxCut, (13) reproduces the quantity
of Equation 1 of [6] (up to an affine shift). This result is used throughout [6] via further reductions
to show that optimizing a number of other classes of PQCs is NP-hard in general. We have similarly
demonstrated that the single-qubit rotations ansatz is NP-hard to optimize for problems such as MaxCut,
but via a compact derivation using ZX-diagrams.

4.2 QAOA1 for MaxCut on a Simple Graph

Next we turn to QAOA [22, 29], for which we continue our use of MaxCut as a running example. For
simplicity we consider QAOA1, the lowest depth realization, which is indicative of the p > 1 case due
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to the alternating structure of the ansatz. Recall that for a QAOA state the MaxCut expectation value
reads ⟨C⟩ = |E|

2 − 1
2 ∑i, j∈E⟨ZiZ j⟩ . We begin with the specific graph G of Figure 3, before we consider

ring graphs in Section B.2, and arbitrary graphs in Appendix B.3. Observe how the structure of the graph

G =

1

2

3

4

Figure 3: Simple example graph to consider for MaxCut with QAOA

directly reappears in the diagrams below, which reflects the fact that the QAOA phase operator is derived
from the cost Hamiltonian. For deeper QAOA circuits, the graph structure will again appear at each layer
in the diagrammatic representation. Hence ZX-calculus provides a toolkit toward directly incorporating
or better understanding the relationship between the cost function and a given parameterized quantum
algorithm.

Here we demonstrate the edge expectation value calculation for QAOA1,

⟨Z2Z3⟩QAOA1 =
24

24

9γ

9γ

9γ9γ

9β

9β

9β

9β

π

π

β

β

β

β

γ

γ

γ
γ

( fff )(πππ)
=

π

π

e−2iβ

9γ

9γ

9γ9γ

2β

2β

γ

γ

γ
γ

(6)
=

π

π

9γ

9γ

9γ
9γ

Σ

Σ

π

cβ
−isβ

Σ

Σ

π

cβ
−isβ

γ

γ

γ
γ



T. Stollenwerk & S. Hadfield 13

(i) (ii)
=

π

π

9γ

9γ

9γ
9γ

Σ

Σ

π

π

π
π

c2
β

−icβ sβ

−icβ sβ

−s2
β

γ

γ

γ
γ

(i)
= Σ
Σ

π

π

9γ

9γ

9γ9γ

γ

γ

γ γ

π

π

9γ

9γ

9γ9γ
π

γ

γ

γ γ

π

π

9γ

9γ

9γ9γ

π
γ

γ

γ γ

π

π

9γ

9γ

9γ9γ

π

π

γ

γ

γ γ

c2
β

−icβ sβ

−icβ sβ

−s2
β

(14)

(20)(21)(22)(23)
= Σ

Σ

0

isγcγ

isγc2
γ

−s2
γ cγ

c2
β

−icβ sβ

−icβ sβ

−s2
β

= cβ sβ sγcγ + cβ sβ sγc2
γ + s2

β s2
γ cγ .
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The remaining expectation values can be similarly computed for each of the edges in E to give ⟨C⟩. In
the third step above, we could not have easily continued within the conventional ZX-calculus framework.
Whenever one needs to pull parameterized X-spiders through parameterized Z-spiders or vice versa, our
extension is utilized. The detailed calculation of the four contributions used in the last step is given in
Appendix C. Note that calculation of the general n-qubit case (cf. Appendix B.3) is surprisingly concise
compared to the special case of 4-qubits considered here.

We consider a hardware-efficient ansatz and two more general QAOA examples in Appendix B.

5 Outlook

We introduced an extension of the ZX-calculus to conveniently incorporate linear combinations of ZX-
diagrams. Moreover we demonstrated how this generalized diagrammatic framework can be applied to
the analysis of parameterized quantum circuits, in particular to the calculation of observable expectation
values. Further quantities of interest such as gradients may be similarly derived, as well as more com-
plicated PQC phenomenon such as barren plateaus studied, by combining our framework with several
distinct but complementary recent ZX-calculus advances [58, 34, 52]. Software implementation of these
results may facilitate novel approaches for automatic contraction of diagrams related to PQCs, including
but not limited to expectation values. A concrete next step is to rigorously derive such algorithms and
carefully analyze problems and PQC classes where they may yield advantages.

Future research could further formalize our approach as well as integrate it with other variants of ZX-
calculus, like ZH-calculus [3] or the ZX-framework for qudits [43, 51]. In particular the latter could facil-
itate novel insights into performance analysis of quantum alternating operator ansätze [29] for problems
like graph-coloring [54] and beyond [46]. Similarly, our approach could be likewise applied to applica-
tions beyond combinatorial optimization, like variational quantum eigensolvers for quantum chemistry
applications [16]. Generally, it is of interest to explore to what extent diagrammatic approaches may
ultimately aid in the design and analysis of better performing parameterized quantum circuit ansätze, as
well as help with important related challenges such as alleviating the cost of parameter setting, avoid-
ing undesirable features such as barren plateaus, or tailoring ansatz design to a given set of hardware
constraints.
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A Additional Rules for Linear Combinations of ZX-Diagrams

We introduce several additional rules which are useful for the calculation of expectation values for PQC
which we utilize in the derivations to follow.

Scalar-pull rule First, scalars can be pulled through the bubble. I.e. it does not matter if we write them
to the left or right of the bubbles.

Σ

Σ

...m ... nA

...m ... nB

a

b

...m ... n = Σ

Σ

...m ... nA

...m ... nB

a

b

...m ... n .

Linear combinations for states and effects Since we can put the scalar factor left or right of the
bubbles, we can simplify linear combinations in the case of states or effects. For states (no inputs), we
can cut the left half of the diagram

Σ

Σ

... nA

... nB
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b
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a
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... n .
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For effects (no outputs), we can cut the right half of the diagram

Σ

Σ

...m A

...m B

a

b

...m =: Σ

...m A

...m B

a

b

...m .

Direct connection of diagrams (no bubbles) We can also completely drop the bubbles and continue
the input and output wires through the sum symbols

Σ

Σ

...m ... nA

...m ... nB

a

b

...m ... n =: Σ

Σ

Aa
· · ·

··
·

· · ·

··
·

Bb
· · ·

··
·

· · ·

··
·

...m ... n .

However, we will not require this notation in the examples considered in this paper.

B Additional Examples

Here we continue our examples from Section 4 and diagrammatically derive MaxCut expectation values
for a hardware efficient ansatz as well as for QAOA1 on rings and general graphs.

B.1 Hardware Efficient Ansatz

We consider a variant of a hardware efficient SU-2 2-local ansatz from Qiskit [2]. This ansatz was also
studied in [24]. For simplicity here we consider a 3-qubit realization,

|0⟩ RY (β̃11) RZ(γ̃11) RY (β12) RZ(γ̃12)

|0⟩ RY (β̃21) RZ(γ̃21) RY (β22) RZ(γ̃22)

|0⟩ RY (β̃31) RZ(γ̃31) RY (β32) RZ(γ̃32)

=
1√
23

9 π
2 β̃11

π
2 γ̃11 9 π

2 β12
π
2 γ̃12

9 π
2 β̃21

π
2 γ̃21 9 π

2 β22
π
2 γ̃22

9 π
2 β̃31

π
2 γ̃31 9 π

2 β32
π
2 γ̃32

( fff ),(ccc)
=

1√
23

β̃11 γ11 9 π
2 β12 γ12

β̃21 γ21 9 π
2 β22 γ22

β̃31 γ31 9 π
2 β32 γ32

,
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where we conveniently set γi j := γ̃i j +
π
2 and βi j := −β̃ i j

2 . To compute the expectation value of a given
cost Hamiltonian, we again requite expectation values of products of Pauli-Z operators. We demonstrate
how such calculations can be performed diagrammatically by considering again MaxCut as an example.
For the expectation value corresponding to a given edge (2,3) we have

⟨Z2Z3⟩=

1
23

β̃11

β̃21

β̃31

γ11

γ21

γ31

9π
2

9π
2

9π
2

β12

β22

β32

γ12

γ22

γ32

π

π

9γ12

9γ22

9γ32

9β12

9β22

9β32

π
2

π
2

π
2

9γ11

9γ21

9γ31

9β̃11

9β̃21

9β̃31

( fff ),(πππ)
=

1
23

β̃11

β̃21

β̃31

γ11

γ21

γ31

π

π

9π
2

9π
2

92β22

92β32

π
2

π
2

9γ11

9γ21

9γ31

9β̃11

9β̃21

9β̃31

(15)

(6)
=

1
23

Σ

π

cβ11

isβ11

Σ

π

cβ21

isβ21

Σ

π

cβ31

isβ31

γ11

γ21

γ31

π

π

9π
2

9π
2

Σ

Σ

π

cβ22

isβ22

Σ

Σ

π

cβ32

isβ32

π
2

π
2

· · ·

· · ·

· · ·
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( fff ),(i)
=

1
23

Σ

γ11+π

π γ11+π

cβ11

isβ11

Σ

γ21

π γ21

cβ21

isβ21

Σ

γ31+π

π γ31+π

cβ31

isβ31

Σ

Σ

9 π
2

π
2

9 π
2 π π

2

cβ22

isβ22

Σ

Σ

9 π
2

π
2

9 π
2 π π

2

cβ32

isβ32

· · ·

· · ·

· · ·

(ccc)
(πππ)
( fff )
=

1
23

Σ

π

cβ11

−ieiγ11sβ11

Σ

π

cβ21

ieiγ21sβ21
Σ

π

cβ31

−ieiγ31sβ31

Σ

Σ

π π

cβ22

sβ22

Σ

Σ

π π

cβ32

sβ32

Σ

π

cβ11

−isβ11

Σ

π

cβ21

−isβ21

Σ

π

cβ31

−isβ31

(17)
= c2

β11
c2

β21
cβ22c2

β31
cβ32 − ic2

β11
c2

β21
cβ22cβ31sβ31sβ32eiγ31

+ ic2
β11

c2
β21

cβ22cβ31sβ31sβ32 − c2
β11

c2
β21

cβ22cβ32s2
β31

eiγ31

+ ic2
β11

cβ21c2
β31

sβ21sβ22sβ32eiγ21 − ic2
β11

cβ21c2
β31

sβ21sβ22sβ32

+ c2
β11

cβ21cβ31cβ32sβ21sβ22sβ31eiγ21eiγ31 + c2
β11

cβ21cβ31cβ32sβ21sβ22sβ31eiγ21

+ c2
β11

cβ21cβ31cβ32sβ21sβ22sβ31eiγ31 + c2
β11

cβ21cβ31cβ32sβ21sβ22sβ31

+ ic2
β11

cβ21sβ21sβ22s2
β31

sβ32eiγ21eiγ31 − ic2
β11

cβ21sβ21sβ22s2
β31

sβ32eiγ31

+ c2
β11

cβ22c2
β31

cβ32s2
β21

eiγ21 + ic2
β11

cβ22cβ31s2
β21

sβ31sβ32eiγ21eiγ31

− ic2
β11

cβ22cβ31s2
β21

sβ31sβ32eiγ21 − c2
β11

cβ22cβ32s2
β21

s2
β31

eiγ21eiγ31

− c2
β21

cβ22c2
β31

s2
β11

sβ32eiγ11 + ic2
β21

cβ22cβ31cβ32s2
β11

sβ31eiγ11eiγ31

+ ic2
β21

cβ22cβ31cβ32s2
β11

sβ31eiγ11 − c2
β21

cβ22s2
β11

s2
β31

sβ32eiγ11eiγ31
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+ icβ21c2
β31

cβ32s2
β11

sβ21sβ22eiγ11eiγ21 + icβ21c2
β31

cβ32s2
β11

sβ21sβ22eiγ11

+ cβ21cβ31s2
β11

sβ21sβ22sβ31sβ32eiγ11eiγ21eiγ31 − cβ21cβ31s2
β11

sβ21sβ22sβ31sβ32eiγ11eiγ21

− cβ21cβ31s2
β11

sβ21sβ22sβ31sβ32eiγ11eiγ31 + cβ21cβ31s2
β11

sβ21sβ22sβ31sβ32eiγ11

− icβ21cβ32s2
β11

sβ21sβ22s2
β31

eiγ11eiγ21eiγ31 − icβ21cβ32s2
β11

sβ21sβ22s2
β31

eiγ11eiγ31

+ cβ22c2
β31

s2
β11

s2
β21

sβ32eiγ11eiγ21 + icβ22cβ31cβ32s2
β11

s2
β21

sβ31eiγ11eiγ21eiγ31

+ icβ22cβ31cβ32s2
β11

s2
β21

sβ31eiγ11eiγ21 + cβ22s2
β11

s2
β21

s2
β31

sβ32eiγ11eiγ21eiγ31 , (16)

where in the last step we have used the identity

ℓ1π r1π

ℓ2π m2π m2π r2π

ℓ3π m3π m3π r3π

=
f r1r2r3
m2m3

23

(ℓ1+m2+ℓ3+m3+r3)π (r1+m2+ℓ3+m3+r3)π

(ℓ2+m2+r2)π

=


0 if

ℓ1 +m2 + ℓ3 +m3 + r3 odd
∨r1 +m2 + ℓ3 +m3 + r3 odd
∨ℓ2 +m2 + r2 odd

f r1r2r3
m2m3

else

, (17)

with ℓ1, ℓ2, ℓ3,m2,m3,r1,r2,r3 ∈ {0,1}×8 and f r1r2r3
m2m3

:= (−1)m2r1+(m2⊕m3)r2+m3r3 , which is the proven in
Appendix D.2. Observe that in the second step above any dependency on the parameters γ12,γ22, and
γ32 was immediately shown to cancel out (due to commuting with the diagonal cost Hamiltonian), and
likewise for β12 (due to the locality of Z2Z3). Similar simplifications are often easily obtained from the
diagrammatic perspective.

The formula (16) exemplifies the significant difficulty faced in obtaining analytical results for PQCs,
even for relatively small ansätze. Nevertheless, in our analysis the complexity remained manageable with
the diagrammatic approach up until the very last step, were we applied a simple numerical procedure to
collect all the surviving terms (according to (17)) of the contraction. Different hardware-efficient ansätze
may be similarly considered, including ones tailored to specific hardware topology. As mentioned, for
deeper or more complicated ansätze, analysis may be aided or automated through implementation in
software. Here (15) demonstrates how diagrammatic approaches can yield more compact representations
of expectation values (as compared to (16)).

B.2 QAOA for MaxCut on Ring graphs

We consider the simple example of the one-dimensional “ring-of-disagrees”, i.e., 2-regular connected
graphs, and rederive the QAOA1 expectation value as previously shown in [22, 53]. First consider the
case of QAOA with arbitrary number of layers p, with n ≫ p. From the problem symmetry, it suffices to
consider the expectation value of a single edge term ⟨ZiZi+1⟩QAOAp . Applying the lightcone rule (9), the
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outermost reduced phase-separation layer (10) reads

...
...

i

i+1

i+2p−1

i+2p

i−1

γ

=

γ γ

γ

...
...· · ·

.

Hence for the QAOAp expectation value we obtain

⟨ZiZi+1⟩QAOAp

=
1

22(p+1)

i+ p+1

i+ p

...

i+2

i+1

i

i−1

...

i− p+1

i− p

...

...

9γ19γ1

9γ1

9γ1

9γ1

9γ1

9β1

...

9β1

9β1

9β1

9β1

...

9β1

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

9γp

9γp

9γp

9βp

9βp

π

π

βp

βp

γp

γp

γp

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

β1

β1

...

β1

β1

β1

...

β1

...

...

γ1

γ1

γ1

γ1

γ1

...

...

.

Observe how the problem and structure again appears in the above diagram (i.e., p-neighborhoods of the
edge (i, i+1) are line graphs). Furthermore, the utility of the lightcone rule is clearly demonstrated here.
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Continuing for the p = 1 case, we get

⟨ZiZi+1⟩QAOA1 =
23

24

i+2

i+1

i

i−1

9γ

9γ

9γ

9β

9β

π

π

β

β

γ

γ

γ

(πππ),( fff )
=

e−2iβ

2

π

π

9γ

9γ

9γ

2β

2β

γ

γ

γ

(6)
=

1
2

π

π

9γ

9γ

9γ

Σ

Σ

π

cβ
−isβ

Σ

Σ

π

cβ
−isβ

γ

γ

γ

(i),(ii)
=

1
2

π

π

9γ

9γ

9γ

Σ

Σ

π

π

π
π

c2
β

−icβ sβ

−icβ sβ

−s2
β

γ

γ

γ
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(i)
=

1
2

Σ

Σ

π

π

9γ

9γ

9γ

γ

γ

γ

π

π

9γ

9γ

9γ
π

γ

γ

γ

π

π

9γ

9γ

9γ

π
γ

γ

γ

π

π

9γ

9γ

9γ

π

π

γ

γ

γ

c2
β

−icβ sβ

−icβ sβ

−s2
β

(8)
=

1
2

Σ

π

π

9γ

9γ

9γ
π

γ

γ

γ

π

π

9γ

9γ

9γ

π

π

γ

γ

γ

−2icβ sβ

−s2
β

(πππ)
(8)
=

e2iγ

23 Σ

π

π
92γ

92γ

π

π

92γ

92γ

−2icβ sβ

−s2
β
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(7)
= −2icβ sβ

e2iγ

23

π

π

92γ

92γ

(7)
=

−2icβ sβ

24

Σ

Σ

π

π

π π

π π

cγ

isγ Σ

Σ

π

π

cγ

isγ

= 2cβ sβ sγcγ

The result is consistent with that of [53, Thm. 1]. The expression obtained for ⟨C⟩ is easily optimized
to reproduce the performance result obtained numerically for the ring of disagrees in [22]. Similar to the
previous examples, here we saw the necessity of our extension for handling X-Z commutations in the
third and seventh steps of the derivation above.

In Appendix B.3 we show the same calculation for MaxCut on general graphs, as obtained for
QAOA1 in [53, Thm. 1]. Similar techniques may be applied and results obtained for a wide variety
of important problems, for instance quadratic binary optimization problems of which MaxCut is a spe-
cial case.

B.3 QAOA1 for MaxCut on General Graphs

For the QAOA expectation value for MaxCut ⟨C⟩ = |E|
2 − 1

2 ∑u,v∈E⟨ZuZv⟩ on general graphs we need to
calculate the contributions ⟨ZuZv⟩. In this section, we perform the calculation for general graphs in the
QAOA, p = 1 case, reproducing results obtained in [53].

Following the lightcone rule from Equation (9) we obtain for Z-Z terms in the MaxCut QAOA1
expectation value on a general graph G = (V,E)

⟨ZuZv⟩QAOA1

(9)
=

1
2|V |

...M 1
uv

...N 1
uv

v

u
9γ 9β

π

π

...

...

β γ

...

...
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(11)
(πππ)
=

e−2iβ

2|N 1
uv|+2

π

π

...

9γ 2β γ

...

(6)
(ii)
=

1
2|N 1

uv|+2

π

π

...

9γ Σ

Σ

π

π

π

π

c2
β

−icβ sβ

−icβ sβ

−s2
β

γ

...

(i)
=

1
2|N 1

uv|+2 Σ

Σ

π

π

...

9γ γ

...

π

π

...

9γ
π

γ

...

π

π

...

9γ
π

γ

...

π

π

...

9γ
π

π
γ

...

c2
β

−icβ sβ

−icβ sβ

−s2
β

.

The first summand vanishes and the second and third are linked by symmetry. We continue with the
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second summand (the I-X-term)

1
2|N 1

uv|+2

π

π

...

9γ
π

γ

...

(10)
=

2nu+2nuv+nv+1

2|N 1
uv|+2

π

π

...

...

...

9γ

9γ

9γ

9γ

9γ

9γ

9γ

9γ

γ

· · ·

· · ·

· · ·

π

γ

γ

γ

γ

γ

γ

γ

γ

γ

· · ·

· · ·

· · ·

...

...

... nu

nuv

nv

v

u

(πππ)
(ccc)
(8)
=

2nu+nuv+1

2|N 1
uv|+2

π

π

...

...

...

9γ

9γ

9γ

9γ

9γ

· · ·

· · ·

πγ

π γ

πγ

π γ

π γ

· · ·

· · ·

...

... nu

nuv

nv

v

u

( fff )
=

2nu+nuv+nv+1

2|N 1
uv|+2

π

π

9γ

9γ 9γ

· · ·

· · ·

π γ π γ

π γ

· · ·

· · ·

nuv +nu

( fff )
(18)
=

cnu+nuv
γ

2 π

π

9γ π γ
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(8)
(7)
=

cnu+nuv
γ

22 π

π

Σ

Σ

π

π

cγ

isγ

=isγcnu+nuv
γ ,

where we have used the size of the exclusive neighborhoods nu := |Nu \{Nv ∪u}|, nv := |Nv \{Nu ∪ v}|,
and the joined neighborhood nuv := |Nu ∩Nv|, the relation |N 1

uv|= nu +nuv +nv, as well as

9γ π γ
(8)
=

eiγ
√

2
92γ

(7)
=

1
2 Σ

Σ

π

π

cγ

isγ

= cγ . (18)

Analogously the third summand (the X-I-term) can be obtained as

π

π

...

9γ
π

γ

...

= isγcnv+nuv
γ .

The fourth summand (the X-X-term) reads

1
2|N 1

uv|+2

π

π

...

9γ
π

π

γ

...
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(10)
=

2nu+2nuv+nv+1

2|N 1
uv|+2

π

π

...

...

...

9γ

9γ

9γ

9γ

9γ

9γ

9γ

9γ

9γ

· · ·

· · ·

· · ·

π

π

γ

γ

γ

γ

γ

γ

γ

γ

γ

· · ·

· · ·

· · ·

...

...

... nu

nuv

nv

v

u

(πππ)
(8)
=

2nu+2nuv+nv

2|N 1
uv|+2

π

π

...

...

...

9γ

9γ

9γ

9γ

9γ

9γ

9γ

9γ

· · ·

· · ·

· · ·
πγ

π γ

πγ

π γ

πγ

π γ

πγ

π γ

· · ·

· · ·

· · ·

...

...

... nu

nuv

nv

v

u

( fff )
(7)
=

2nuv

22

(
eiγ
√

2

)nu+2nuv+nv

π

π

92γ 92γ

· · ·

· · ·

92γ

92γ

92γ

92γ

· · ·

· · ·
· · ·

92γ

92γ

· · ·

· · ·

nv

nuv

nu
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(18)
(19)
=

cnu+nv
γ

22

π

π

Σ

Σ

π

π

c2
γ

−s2
γ

· · ·

· · ·
Σ

Σ

π

π

c2
γ

−s2
γ

nuv times

(ii)
=
−cnu+nv

γ

22

{(
nuv

1

)
s2

γ cnuv−2
γ

π π

π π

+

(
nuv

3

)
s6

γ cnuv−6
γ

π π π π

π π π π

+

(
nuv

5

)
s10

γ cnuv−10
γ

π π π π π π

π π π π π π

+ . . .

}

=−cnu+nv
γ ∑

i=1,3,...

(
nuv

i

)
(s2

γ)
i(c2

γ)
nuv−i ,

where we have used

92γ

92γ
( fff )
=

92γ

92γ

(7)
=

(
e−iγ
√

2

)2
Σ

Σ

π

π

cγ

isγ

Σ

Σ

π

π

cγ

isγ
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=2
(

e−iγ
√

2

)2

Σ

Σ

π

π

c2
γ

−s2
γ

. (19)

Hence, the total Z-Z-expectation value reads

⟨ZuZv⟩QAOA1 = cβ sβ sγ
(
cnu+nuv

γ + cnv+nuv
γ

)
+ cnu+nv

γ s2
β ∑

i=1,3,...

(
nuv

i

)
(s2

γ)
i(c2

γ)
nuv−i.

This result is consistent with the corresponding QAOA1 performance analysis of [53]; applying the
binomial theorem to write the sum above in closed form then leads directly to the result of [53, Thm. 1].

C Details on QAOA1 for MaxCut on Simple Graph

We calculate each of the four summands in (14). The first summand (the I-I-term) reads

π

π

9γ

9γ

9γ
9γ

γ

γ

γ
γ

( fff )
=

π

π

9γ

9γ

9γ

9γ

γ

γ

γ

γ

(8)
=

1
24

π

π
= 0 . (20)
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The second summand (the I-X-term) reads

π

π

9γ

9γ

9γ
9γ

π

γ

γ

γ
γ

(πππ)
=

π

π

9γ

9γ

9γ
9γ

γ

π
γ

γ
π γ

( fff )
=

π

π

9γ

9γ

9γ

9γ

γ

γ

π γ

π γ

(8)
=

1
22

π

π

9γ

9γ

π γ

π γ

=
1
22

π

π

9γ

9γ

π γ

π γ

(8)
=

1
23

π

π

e2iγ 92γ

92γ
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(7)
=

1
24

π

π

Σ

Σ

π
π

cγ

isγ

Σ

Σ

π
π

cγ

isγ

(i)
=

1
24

Σ

Σ

π

π

π π

π π

cγ

isγ

Σ

Σ

π

π

cγ

isγ

(ii)
=

1
24

π π

π π

isγcγ = isγcγ (21)

.

The third summand (the X-I-term) reads

π

π

9γ

9γ

9γ
9γ

π

γ

γ

γ
γ

(πππ)
=

π

π

9γ

9γ

9γ
9γ

π γ

π
γ

πγ
γ
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( fff )
=

π

π

9γ

9γ

9γ

9γ

π γ

π γ

π γ

γ

(8)
=

1
2

π

π

9γ

9γ

9γ

π γ

π γ

π γ

=
1
2

π

π

9γ

9γ

9γ

π γ

π γ

π γ
(8)
=

1√
25

π

π

e3iγ

92γ

92γ

92γ

(7)
=

1
24

π

π

Σ

Σ

π
π

cγ

isγ

Σ

Σ

π
π

cγ

isγ

Σ
Σ

π
π

cγ

isγ

(i)
=

1
24

Σ

Σ

π

π

π π

π π

cγ

isγ

Σ

Σ

π

π

cγ

isγ

Σ

Σ

π

π

cγ

isγ
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(ii)
=

1
24

π π

π π

isγc2
γ = isγc2

γ (22)

.

The fourth summand (the X-X-term) reads

π

π

9γ

9γ

9γ
9γ

π

π

γ

γ

γ
γ

(πππ)
=

π

π

9γ

9γ

9γ
9γ

π γ

2π
γ

πγ
π γ

( fff )
=

π

π

9γ

9γ

9γ

9γ

π γ

π γ

γ

π γ

(8)
=

1
2

π

π

9γ

9γ
9γ

π γ

π γ
π γ

=
1
2

π

π

γ

γ

γ

π 9γ

π 9γ

π 9γ

(8)
=

1√
25

π

π

e3iγ

92γ

92γ

92γ



T. Stollenwerk & S. Hadfield 37

(7)
=

1
24

π

π
Σ

Σ

π
π

cγ

isγ

Σ

Σ

π
π

cγ

isγ

Σ

Σ

π
π

cγ

isγ

(i)
=

1
24

Σ

Σ

π

π
π π

cγ

isγ

Σ

Σ

π

π π
π

cγ

isγ

Σ

Σ

π
π

cγ

isγ

(ii)
=

1
24

π π

ππ

π π

(−s2
γ cγ) = −s2

γ cγ . (23)

D Proofs of useful ZX-diagram Identities

D.1 Phase-gadget identity

Proof of (8). First, we can us the spider fusion rule to write
. . . . . .

tπ

−γ ℓπ rπ γ

bπ
. . . . . .

( fff )
=

. . . . . .
tπ

−γ ℓπ rπ γ

bπ
. . . . . .

.

Then, we just consider the inner part

tπ

−γ ℓπ rπ γ

bπ

(πππ)
=

tπ

−γ (t+ℓ+b)π rπ γ

bπ
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( fff )
=

tπ

−γ (t+ℓ+b)π rπ γ

bπ

=

tπ

t+ℓ+bπ −γ

rπ γ

bπ

( fff )
=

tπ

(t+ℓ+b)π −γ

rπ γ

bπ

(bbb)
=

1√
2

tπ

(t+ℓ+b)π −γ

rπ γ

bπ

(πππ)( fff )
=

1√
2

(t+r)π rπ

γ (t+ℓ+b+r)π −γ

bπ

.

If t + l +b+ r even, we have

1√
2

(t+r)π rπ

γ −γ

bπ

(iiiddd),( fff )
=

1√
2

(t+r)π rπ

bπ

(ccc)
=

1
2

(t+r)π rπ

bπ

(iiiddd),( fff )
=

1
2

tπ

bπ
,
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else, if t + l +b+ r odd, we have

1√
2

(t+r)π rπ

γ π −γ

bπ

( fff ),(πππ)
=

1√
2

eiγ
(t+r)π rπ

−2γ

(b+1)π π

,

which proves (8).

D.2 Hardware Efficient Ansatz

Proof of (17).

ℓ1π r1π

ℓ2π m2π m2π r2π

ℓ3π m3π m3π r3π

(πππ),( fff )
=

ℓ1π m2π r1π

ℓ2π m2π (m2+m3)π r2π

ℓ3π m3π m3π r3π

(ccc),(πππ),( fff )
= (−1)m2r1+(m2⊕m3)r2+m3r3︸ ︷︷ ︸

=: f
r1r2r3
m2m3

ℓ1π r1π

ℓ2π m2π r2π

ℓ3π m3π r3π

( fff )
= f r1r2r3

m2m3

ℓ1π r1π

ℓ2π m2π r2π

ℓ3π m3π r3π

( fff )
= f r1r2r3

m2m3

ℓ1π r1π

(ℓ3+m3+r3)π

ℓ2π m2π r2π

(πππ),( fff )
= f r1r2r3

m2m3

ℓ1π r1π

(m2+ℓ3+m3+r3)π

(ℓ2+m2)π r2π

( fff )
= f r1r2r3

m2m3

ℓ1π r1π

(ℓ2+m2)π (m2+ℓ3+m3+r3)π r2π

(hhhoooppp fff ),( fff )
=

f r1r2r3
m2m3

2

ℓ1π r1π

(ℓ2+m2+r2)π (m2+ℓ3+m3+r3)π

(hhhoooppp fff ),( fff )
=

f r1r2r3
m2m3

22

ℓ1π r1π

(ℓ2+m2+r2)π (m2+ℓ3+m3+r3)π
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(ccc),( fff )
=

f r1r2r3
m2m3

23

(ℓ1+m2+ℓ3+m3+r3)π (r1+m2+ℓ3+m3+r3)π

(ℓ2+m2+r2)π
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