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Quipper and Proto-Quipper are a family of quantum programming languages that, by their nature
as circuit description languages, involve two runtimes: one at which the program generates a circuit
and one at which the circuit is executed, normally with probabilistic results due to measurements.
Accordingly, the language distinguishes two kinds of data: parameters, which are known at circuit
generation time, and states, which are known at circuit execution time. Sometimes, it is desirable
for the results of measurements to control the generation of the next part of the circuit. Therefore,
the language needs to turn states, such as measurement outcomes, into parameters, an operation we
call dynamic lifting. The goal of this paper is to model this interaction between the runtimes by
providing a general categorical structure enriched in what we call “bisets”. We demonstrate that the
biset-enriched structure achieves a proper semantics of the two runtimes and their interaction, by
showing that it models a variant of Proto-Quipper with dynamic lifting. The present paper deals with
the concrete categorical semantics of this language, whereas a companion paper [7] deals with the
syntax, type system, operational semantics, and abstract categorical semantics.

1 Introduction

Quipper [9, [10] is a functional programming language for designing quantum circuits. It shares many
properties with hardware description languages. For example, Quipper distinguishes two kinds of run-
time: (i) Circuit generation time. This is when a quantum circuit is generated on a classical computer.
(i1) Circuit execution time. This is when a quantum circuit is run on a quantum computer or simulator.
As a result of these two runtimes, Quipper makes a distinction between (i) parameters and (ii) states. A
parameter is a value known at circuit generation time, such as a boolean for an if-then-else expression.
A state is a value only known at circuit execution time, such as the state of a qubit or a bit in a circuit.

The distinction between parameters and states reflects the assumption that classical computers and
quantum devices may reside in different physical locations and that they cooperate to perform compu-
tations. This is also an assumption shared by the quantum computing model QRAM [12]. In practice,
the computation in a quantum device can interleave with the computation in a classical computer. This
means that there should be a mechanism to turn the results of measurements, which are states, into pa-
rameters. Dynamic lifting is a construct that makes this possible in the programming language. It lifts
the result of a measurement from a quantum computer to a boolean in the programming language, where
it can then be used as a parameter in the construction of the rest of the circuit. This enables more general
post-processing for quantum computation than the simpler model where all measurements are done at
the end. Some quantum algorithms, such as those involving magic state distillation, require dynamic
lifting, while many others do not.

Since Quipper is implemented as an embedded language in the host language Haskell, it does not
have a formal semantics. Proto-Quipper [6, 8,17, [18]] is a family of quantum programming languages that

© P. Fu, K. Kishida, N.J. Ross & P. Selinger
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are intended to provide Quipper with a formal foundation such as operational and categorical semantics.
Like Quipper, Proto-Quipper has the two runtimes and distinguishes between parameters and states.

The semantics of the two runtimes depends on the meaning of “circuit” and “quantum operation”.
Rather than fixing one specific kind of circuit or quantum operation, the programming language is para-
metric on two small categories M and Q, which are assumed to be given but otherwise arbitrary, subject
to some conditions. The first of these is a symmetric monoidal category M, whose morphisms represent
quantum circuits. The second is a symmetric monoidal category Q, whose morphisms represent quantum
operations. We note that there is an important conceptual difference between these categories. The mor-
phisms of M represent circuits as syntactic entities. For example, Quipper allows circuits to be boxed,
which turns them into a data structure that can be inspected and operated on. A boxed circuit may then
be reversed, printed, iterated over, etc. Thus, M is typically a free category generated by some collection
of (quantum and classical) gates. Measurement can be supported in the category M, but it will merely
be a gate in a circuit, turning a qubit into a classical bit of the circuit. On the other hand, the category Q
represents quantum operations, which are physical entities. Typically, Q is a category of superoperators
(which include unitary operations and measurements). We assume that M and Q have the same objects,
and that there is a symmetric monoidal interpretation functor J : M — Q, which interprets circuits by the
quantum operations they embody.

We emphasize that measurement and dynamic lifting are two different concepts that should not be
confused. Measurement is merely a gate in a quantum circuit, which turns a qubit (a state) into a classical
bit (also a state). On the other hand, dynamic lifting is an operation of the programming language, which
turns a classical bit (a state) into a boolean of the programming language (a parameter). In the categorical
semantics, measurement is a morphism Qubit — Bit in the categories M and Q. On the other hand,
dynamic lifting is not a morphism in M or in Q; rather, it is a morphism in a certain Kleisli category.

Specifically, in our recent work [7], we proposed a type system, an operational semantics and an
abstract categorical semantics for a version of Proto-Quipper with dynamic lifting, which is called Proto-
Quipper-Dyn. Dynamic lifting is modeled as a map Bit — TBool, where T is a commutative strong
monad, such that the following diagram commutes.

Bit

V ldynlift
n

Bool —— TBool

We have shown in [7]] that our categorical model is sound with respect to the type system and operational
semantics of the language. However, the categorical semantics in [7] is purely abstract, simply listing the
properties that such a categorical model must have, without showing that such a category actually exists
or giving an example of one.

In this paper, we construct a concrete model for the general categorical semantics of [[7]. Constructing
such a model is challenging because it requires a novel combination of quantum circuits (morphisms in
M) and quantum operations (morphisms in Q): The categorical model must be able to account for both
quantum circuits and quantum operations, as well as operations such as boxing, dynamic lifting, and of
course higher-order functions.

Our technical innovation to make all of this work is biset enrichment. A biset is an object in the
category Setzop, or, more concretely, it is a triple (Xo, X, f) of sets Xp,X; and a function f : X; — Xp. A
morphism of bisets is an obvious commutative square. We will consider categories enriched in bisets.
Concretely, such a category has one kind of objects, but two kinds of morphisms, which we use to model
quantum circuits and quantum operations, respectively. Our construction is based on a biset-enriched
category C constructed from M and Q. Its objects are the same as those of M and Q, and its hom-bisets
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are (Q(A,B),M(A,B),Js ), where the function J4 5 : M(A,B) — Q(A, B) is given by the interpretation
functor J. A global element f of C(A,B) consists of a pair of functions fy, f1 that makes the following
diagram commute.

1 - M(4,B)

N

Q(A,B)

Thus, fi is a quantum circuit, which can be used as a quantum operation fy by composing with Jy .
The biset-enriched category C therefore maintains a distinction between M and Q while taking the
interpretation functor J into account. To model the higher-order features of the programming language,
we embed C in a monoidal closed biset-enriched category C, which we construct as a certain subcategory
of the biset-enriched category of presheaves over C. We show that C satisfies the axiomatization specified
in [[7]. Therefore it is a concrete model for Proto-Quipper with dynamic lifting.

Our approach to modeling dynamic lifting differs from recent work by Lee et al. [15)], where the
category of quantum channels, which generalize quantum circuits with a notion of branching for mea-
surement results, is used to model a single runtime. Because our model accounts separately for circuit
generation time (category M) and circuit execution time (category Q), we are able to support a type sys-
tem that distinguishes quantum circuits from quantum computations that use dynamic lifting [7]. This
prevents a class of runtime errors in Quipper caused by boxing a computation that uses dynamic lifting.

The rest of the paper is structured as follows. In Section 2] we first review some basic concepts from
enriched category theory, and then recall from [7]] the axiomatization of an enriched categorical semantics
for dynamic lifting. In Section[3] we define the biset-enriched category C. We show its presheaf category
C admits a commutative strong monad and a linear-non-linear adjunction. In Section 4, we construct a
reflective subcategory C of C and show that it is an enriched categorical model for dynamic lifting.

2 An enriched categorical semantics for dynamic lifting
Enriched categories are a generalization of categories where, instead of hom-sets, one works with hom-
objects, which are objects in a monoidal category.
Definition 2.1. Let ¥ be a monoidal category. A ¥ -enriched category A is given by the following:
* A class of objects, also denoted A.
» Forany A,B € A, an object A(A,B) in 7.
» Forany A € A, a morphism uy : I — A(A,A) in ¥, called the identity on A.
* Forany A,B,C € A, a morphism c4 g : A(A,B) @ A(B,C) — A(A,C) in ¥, called composition.
* The composition and identity morphisms must satisfy suitable diagrams in ¥ (see [2, [11]).
Remarks

* Many concepts from the theory of non-enriched categories can be generalized to the enriched
setting. For example, ¥ -functors, ¥ -natural transformations, 7 -adjunctions, and the #'-Yoneda
embedding are all straightforward generalizations of their non-enriched counterparts. We refer the
reader to [2, [11]] for comprehensive introductions. Symmetric monoidal categories can also be
generalized to the enriched setting (see Appendix [A]for a definition).
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* In the rest of this paper, when we speak of a map f : A — B in a ¥ -enriched category A, we mean
a morphism of the form f: I — A(A,B) in ¥. Furthermore, when g : B — C is also a map in A,
we write go f : A — C as a shorthand for

"% A(A,B)®A(B,C) 5 A(A,C).

* A ¥ -enriched category A gives rise to an ordinary (non-enriched) category V(A), called the un-
derlying category of A The objects of V(A) are the objects of A and the hom-sets of V(A) are
defined as V(A)(A,B) = ¥ (I,A(A,B)), for any A,B € V(A). Similarly, a #-functor F : A — B
gives rise to a functor VF : V(A) — V(B) and a ¥ -natural transformation « : F — G gives rise to
a natural transformation Vo : VF — VG.

The construction in this paper is parameterized by two small symmetric monoidal categories, denoted
by M and Q. We fix M and Q once and for all and require the following:

(1) M and Q have the same objects, including a distinguished object called Bit. The category M has
distinguished morphisms zero, one :  — Bit.

(2) Q has a coproduct Bit =/ + 1/, and the tensor product in Q distributes over this coproduct.

(3) There is a strict symmetric monoidal functor J : M — Q that is the identity on objects and J(zero) =
inj, : I —I+1,J(one) =inj, : I — [+ 1. We call J the interpretation functor.

(4) The category Q is enriched in convex spaces. That is, for any real numbers p;, p, € [0,1] such
that p; + p» = 1, and any maps f,g € Q(A,B), there is a convex sum p;f + prg € Q(A,B), and
the convex sum satisfies certain standard conditions which are detailed in Appendix [Cl Moreover,
composition is bilinear with respect to convex sum, i.e., (p1fi + paf2)og = pi1(fiog) +p2(f20g)

and ho (pifi+ pafa) = pi(ho fi) + pa(ho fo).

(5) ForanyA € Q,and f:1— Bit®A € Q, we have f = p;(inj; ® f1) + p2(inj, ® 1), where inj;, inj, :
I — I+1 and py, p; € [0, 1] are uniquely determined real numbers such that p; + p» = 1. When
pi # 0, the map f; : I — A is also unique.

Perhaps it is useful to explain more specifically what we mean when we say that M and Q are fixed
“once and for all”. The point is that these categories are not only used in the categorical semantics, but
also in the operational semantics of Proto-Quipper-Dyn (i.e., to run the program, we must know what
a circuit is and what a quantum operation is). Therefore, these categories should be regarded as given
as part of the language specification, rather than as a degree of freedom in the semantics. On the other
hand, nothing in the operational or denotational semantics depends on particular properties of M and Q
other than properties (1)—(5) above. Therefore, Proto-Quipper-Dyn can handle a wide variety of possible
circuit models and physical execution models.

In practice, the category M will be a category of quantum circuits and the category Q will be a
category of quantum operations. These categories will typically have additional objects, such as Qubit
and perhaps Qutrit, and additional morphisms, such as H : Qubit — Qubit and Meas : Qubit — Bit.
Requirement (5) is only needed in the operational semantics of Proto-Quipper-Dyn; it is not needed for
the denotational semantics.

We now recall the enriched categorical semantics for dynamic lifting specified in [7].

'We use V(A) to denote the underlying category, rather than the usual U (A), because the letter U will serve another purpose
in this paper.
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Definition 2.2. Let 7 be a cartesian closed category with coproducts. A ¥ -category A is a model for
Proto-Quipper with dynamic lifting if it satisfies the following properties.

a A is symmetric monoidal closed, i.e., it is symmetric monoidal and there is a #"-adjunction — ®A
A — —forany A € A.

b A has coproducts. Note that the tensor products distribute over coproducts, because — ® A is a left
adjoint functor for any A € A, which preserves coproducts.

¢ A is equipped with a #'-adjunction p: ¥ — A b : A — ¥ such that p is a strong monoidal
¥ -functor. This implies that p(1) =7 and p(X X Y) = pX ® pY.

d A is equipped with a commutative strong #"-monad 7. For any A,B € A, we write t4 g :AQTB —
T (A ® B) for the strength and s4 3 : TA ® B — T (A ® B) for the costrength.

e Let V(A) be the underlying category of A, VT be the underlying monad of 7', and Kly7(V(A))
be the Kleisli category of VT. The Kleisli category Kly7(V(A)) is enriched in convex spaces. In
other words, for any A,B,C € A, if f,g: A — TB and p,q € [0,1],p+ g = 1, then there exists a
convex sum pf +qg:A — TB. Moreover, for any h: C — TA,e : B— TC, we have the following:

poT(pf+qg)oh=p(uoTfoh)+q(noTgoh),
poTeo(pf+qg)=p(noTeof)+q(uoTeog).

f There are fully faithful embeddings M & V(A) and Q AN Iyr(V(A)). These embedding functors
are strong monoidal, and ¢ preserves the convex sum. Moreover, the following diagram commutes
forany S,U € M.

S,U

M(S,U) —2Y 5 v(A)(S,U)

l]s.u \LES.U

QS.U) —2%% Kiyr(V(A))(S.U)

Here, E : V(A) — Kly7(V(A)) is the functor such that E(A) =A and E(f) =no f.

g Let . denote the set of objects in the image of y. For any S,U € .¥, there is an isomorphism
e
(S —U) = A(S,U).

h There are maps dynlift : Bit — TBool and init : Bool — Bit in A such that the following diagram

commutes.
Bit
V ldynlift
Bool L> TBool
Remarks

* Condition || gives rise to a comonoid structure dupy : pX — pX ® pX and discardy : pX — I for
any X € . Moreover, for any map f: X — Y in 7/, we have the following in A.

dupy o pf = (pf ® pf)odupy.
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* Objects in the image of the functor p are called parameter objects in A. Such objects are equipped
with maps dup : A -+ A®A and discard : A — I. In particular, Bool := I+ = p(1) + p(1) = p(2)
is a parameter object.

* Using condition we define box = p(e) and unbox = p(e~!), and we have

box / unbox

pb(S—U) =~ pA(S,U).
* Note that
Klyr(V(A))(A,B)=V(A)(A,VTB)="7(1,A(A,TB)) =" (1,KIy(A)(A,B)) =V (KIr(A))(A,B).

* The Kleisli category Klyr(V(A)) is monoidal because VT is a commutative strong monad and
V(A) is monoidal. For any f:A; — VTByand g: Ay — VTB, in Kly7(V(A)), we define f®@ g €
KZVT(V(A))(Al ®As, B ®Bz) by

AL @A VTB @ VTB, 5 VT (B, @ VTBy) S VIVT (B ©By) 5 VT(B, ©Bs).

* Since y(S) = ¢(S) for any S € M, Q, we define Bit = y(Bit) = ¢ (Bit) € A.

* Condition [flexpresses the requirement that the enriched category A must combine both categories
M and Q, i.e., they are subcategories of V(A) and its Kleisli category, respectively. Thus A has
both quantum circuits and quantum operations. The commutative diagram implies that a circuit in
A can be used as a quantum operation.

* In [7]], we have shown that conditions [al{h] are sufficient to give a model of Proto-Quipper-Dyn that
is sound with respect to its type system and an operational semantics.

3 A biset-enriched category C and its category of presheaves C

3.1 Biset enrichment

We now begin our construction of a concrete model satisfying Definition[2.2] Let 2 be the category with
two objects 0,1 and one nontrivial arrow 0 — 1. Let ¥ = Set?” be the category of functors from 2°P
to Set. Concretely, the objects of ¥ are triples (Ag,A1, f), where Ag,A; are sets and f is a function
A — Ap. We call such a triple a biset. A morphism in ¥ from (Ag,A1, f) to (Bo,B1,g) is a pair (hg,h;),
where hy : Ag — Bg and h; : A} — Bj are functions such that the following diagram commutes.

h
ALHIBl

bl

A()*())B()

Because it is a presheaf category, the category of bisets ¥ = Set?” is complete, cocomplete, and cartesian
closed. We write A = B to denote an exponential object in #'.

The category 7 is itself a ¥ -category where the hom-object #'(A,B) is given by the exponential
object A = B. We write Homy (A, B) to denote a hom-set when viewing ¥ as an ordinary category. Any
set X can be viewed as a trivial biset (X,X,Id). Therefore, any ordinary category can be viewed as a
trivial biset-enriched category. For example, Set can be viewed as a ¥ -category, where the hom-objects
are given by Set(A, B) = (Set(A,B),Set(A,B),Id) for any A, B € Set.
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Definition 3.1. We define ¥ -functors Uy(Ag,A1,a) =Ap: ¥ — Set, and A(X) = (X,X,1d) : Set — 7.

The ¥ -functor A is fully faithful and Uj is strong monoidal. Note that there is also another functor
Ui(Ao,A1,a) =A; : ¥ — Set, but it is only an ordinary functor, not a ¥'-functor. This is because for
A,B € ¥/, there does not in general exist a morphism A = B — Set(A;,B;) in ¥. The functor U; will
play no role in this paper, but the two # -functors Uy and A will be important.

Proposition 3.2. There is a ¥V -adjunction Uy : ¥V — Set 4 A : Set — V. We write T for the ¥ -monad
AoUy, it is a commutative strong ¥ -monad.

3.2 The 7 -category C

In the following we define a non-trivial ¥ -category C.
Definition 3.3. We define the ¥ '-category C as following.
* The objects of C are the same as those of M and Q.

* For objects A, B € C, we define C(A, B) as the following object of ¥/,
C(A,B) = (Q(A, B),M(A, B), Jzs - M(4,B) - Q(A, B)),
where J : M — Q is the interpretation functor.
* For every object A € C, we have a morphism uy = (Ido,Td;) : 1 — C(A,A) in ¥, where Id; (*) =
Idg:A—AinMandIdy(x) =1ds: A — Ain Q.
* For any A,B,C € C, we have a morphism c4 gc = (co,c1) : C(A,B) x C(B,C) — C(A,C) in ¥,

where ¢g : Q(A,B) x Q(B,C) — Q(A,C) and ¢; : M(A,B) x M(B,C) — M(A,C) are the composi-
tions in Q and M, respectively.

3.3 The ¥ -category C

The biset-enriched category C is symmetric monoidal. However, it is not closed. For that, we will need
to work in the ¥ -enriched presheaf category C.
Definition 3.4. We define the ¥ -category C = #' €. Concretely, an object F € C is a ¥ -functor C°P —
. Because ¥ is complete, for any F,G € C, we have a hom-object C(F,G) € ¥ that represents ¥ -
natural transformations F — G.

An object in C is a #-functor F : C°® — #. This means that for each A € CP, there is an object
FA € 7. And for any A, B € C° there is a morphism Fyp : C°’(A,B) — FA = FB in ¥/, which is the
following commutative diagram.

1

F,
M(B,A) —*2— (FA = FB)| = Homy (FA,FB)

lJB.A l[’o
0

Q(B,A) —225 (FA = FB)o = Set((FA)o, (FB)o).
Note that an element 27 € Homy (FA, FB) is a pair of function (o, s1) such that the following commutes.

(FA) =" (FB);

Jr I

(FA)o fo, (FB)o

Thus we define po(ho,h1) = hy. So a ¥ -functor F : C°°? — ¥ induces an ordinary functor F 0.Q°% — Set,
where F(A) = (FA) and the function Q(B,A) — Set(F°A, F°B) is given by F{; for any A,B € Q.
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Proposition 3.5. The ¥ -category C is a V' -monoidal closed category, where the tensor product ®Day
and linear exponential —op,y are given by Day’s convolution [3|]. The tensor unit is defined by I := yI =
C(—,I), where y is the ¥ -enriched Yoneda embedding functor.

The ¥ -category C has coproducts. Day’s construction implies that the Day tensor product distributes
over the coproducts, and that the ¥ -enriched Yoneda embedding y : C < C is strong monoidal.
The ¥ -adjunction Uy - A and the #-monad T can be lifted to C.

Definition 3.6. We define ¥ -functors Up(F) := Ugo F : " — Set®”, A(F) := Ao F : Set®" — 7 ¢”,
and T :=AoU,: V" — vC,

Note that A is fully faithful and that Uy is strong monoidal.
Proposition 3.7. There is a ¥ -adjunction Uy : V" — Set®” 4 A : Set®” — ¥ C”.

Proof. Forany F € Set®” G € C, we need to show that Set®” (UpF, G) = ¥ € (F,AG) that is ¥ -natural
in F and G. This is true since the following isomorphisms follow from properties of end.

7" (F,AG) = ¥ (FA,AGA) = / Set(UyFA,GA) = ¥ (AUGFA,AGA)
AeC AeC

= ¥ " (AUGF,AG) = Set®” (UyF, G). O

Proposition 3.8. The monad T is a commutative strong monad.

Proposition [3.8]is a consequence of the following more general theorem, whose proof can be found
in Appendix D]
Theorem 3.9. Let ¥ be a complete, cocomplete, symmetric monoidal closed category. Let A be a ¥ -

category. If T is a commutative strong ¥ -monad on ¥, then T(F) =T oF is a commutative strong
Y -monad on VA .

Consider a # -functor F : C°? — Set. For any A,B € C, FA € Set, and the map Fup : C(B,A) —
Set(FA,FB) is uniquely determined by the function Fy : Q(B,A) — Set(FA,FB). So F is uniquely
determined by F” : Q°P — Set. In fact, the following theorem holds (the proof is in Appendix .
Theorem 3.10. We have Set®” = SetQ”.

The following proposition shows the maps in the Kleisli category of T are essentially maps in Set?”.
Proposition 3.11. For any F,G € C, we have

C(F, TG) = C(F,AUyG) == Set®” (UpF,UyG) == Set®” (F°,G).

3.4 A linear-non-linear adjunction in C
Suppose F € C and Ve V. By definition, the copower V © F, if it exists, is an object VO F € C such
that the isomorphism C(V © F,G) =2V = C(F,G) is ¥ -natural in G € C.
Definition 3.12. Let V € 7, F € C. We define the copower V ® F in C as follows:
(VOF)(A)=V XFA:C® — ¥,
The fact that the above is indeed a copower can be verified using the calculus of ends. For any

F,.G e C, we have

C(VOF,G) V x FA= GA V = (FA= GA)
AeC AeC

>V = (FA= GA) 2=V = C(F,G).
AeC
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Definition 3.13. We define ¥ -functors p(X) =X ®I1: ¥ — Cand b(F)=C(I,F):C — 7.
The ¥ -functors p and b form a linear-non-linear adjunction in the sense of Benton [[1].

Theorem 3.14. We have a ¥ -adjunction p -1b. Moreover, p is strong monoidal.

Proof. We have C(pX,G) =2 C(X®1,G) =X = C(I,G) = X = b(G). Moreover, p is a strong monoidal
¥ -functor. We have p(1) =10yl = 1 x C(—,I) =yl and
AB
P(X) ®pay p(Y) = C(—,A®B) x X xyl(A) xY x yI(B)

AB
~X xY x C(—,A®B) xyI(A) x yI(B) 2 X xY xyl = p(X XY). O

Theorem 3.15. For any S,U € C, there is an isomorphism b(yS —opay YU) = C(S,U).

Proof. We have b(yS —opay yU) = C(1,yS —opay yU) = C(yS,yU) = C(S,U). O
Applying p to the above isomorphism yields pp(yS —opay yU) = pC(S,U). This isomorphism is
called the box/unbox isomorphism in [[17]].

4 A reflective subcategory C of C

The 7 -category C itself is not a model for Proto-Quipper with dynamic lifting. For example, it does not
have a map Bit — TBool for dynamic lifting. Namely, we define Bool := yI +yI = C(—,1)+C(-,I)
and Bit := yBit = C(—,Bit) € C, where Bit € C. Note that Bit =7+ in Q. Consider the following

C(Bit, TBool) = Set®” (UyBit, UyBool) == Set?” (Bit’, Bool’)
= SetQup(Q(i’Bit)’Q(ivl) +Q(771)) = Sethp(Q(771+I)vQ(7vl) +(2(771))

So a map in C(Bit, 7Bool) is the same as a natural transformation from Q(—,7+1) to Q(—,1) +Q(—,I)
in Set®” . Moreover, for conditionto be satisfied, this natural transformation should be a left inverse of
the canonical natural transformation Q(—,7) +Q(—,7) — Q(—,7+1). On the other hand, by the Yoneda
lemma, every natural transformation from Q(—,7+1) to Q(—,7) + Q(—,/) either takes all of its values
in the left component or in the right component of the disjoint union. Therefore, it can’t be a left inverse
to Q(—,7) +Q(—,1) = Q(—,1+1). It follows that dynamic lifting cannot be interpreted in C. To fix
this, we now consider a reflective subcategory of C, in the style of Lambek [14]].

Definition 4.1. A 7 -functor F : C® — ¥ is called smooth if F° : Q° — Set is a product-preserving
functor, i.e., F(A+ B) = F°A x FB for any A,B € Q.

Observe that for any A € C, the ¥ -enriched Yoneda embedding y of A, which is C(—,A), is smooth.
Because C(—,A)? = Q(—,A), and for any By,B, € Q, we have Q(B; + By,A) = Q(B;,A) x Q(B,,A).
Thus, the codomain of y consists of smooth ¥ -functors.

Definition 4.2. We define C to be the full ¥ -subcategory of smooth functors.

Definition 4.3. We define the Lambek embedding y : C — C to be the corestriction of the Yoneda em-
bedding y, i.e., it is the unique ¥ -functor such that the following diagram commutes.

N

C-—'5¢C
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The details of the proof of the following theorem are in Appendix
Theorem 4.4. The ¥ -category Cisa reflective 'V -subcategory of C, i.e., the inclusion ¥ -functor i :
C— Chasa left adjoint L.

Using results of Day [4, 5] (see also [[16] for a more recent exposition), we can furthermore show
that that C is symmetric monoidal and L is strong monoidal. See Appendixﬁfor further details. We now
give an explicit definition of the monoidal closed structure in C.

Definition 4.5. For any F,G € C, we define the tensor product, internal hom and tensor unit in C as
F @Lam G := L(iF ®Dpay IG), F —oLam G 1= iF —opyy iG, and I :=yI = C(—,I), respectively.
In the above definition, the linear exponential F' —op,m G is well-defined because iF' —op,y iG is an

object in C (Theorem .
Theorem 4.6. The ¥ -category Cis symmetric monoidal closed. For any F,G,H € C, there is a ¥ -

natural isomorphism C(F ®@pam G,H) = C(F,G —opam H).

Proof. We have C(F @Lam G,H) = C(L(iF ®pay iG),H) = C(iF ©pay iG,iH) = C(iF,iG —opyy iH)

C(F,G—OLamH). O]

4.1 A linear-non-linear adjunction in C

The ¥ -category C also admits a linear-non-linear adjunction and, as in C, there is a box/unbox isomor-
phism in C.

Definition 4.7. We define the ¥ -functors 5(X) = L(p(X)) : ¥ — C and b(F) =b(iF) : C — V.
Theorem 4.8. We have a ¥ -adjunction p - b. Moreover, p is strong monoidal.

Proof. We have C(pX,F) = C(L(p(X)),F) = C(pX,iF) = X = b(iF) = X = b(F). Moreover, j is
strong monoidal because both L and p are strong monoidal. 0

Theorem 4.9. For any S,U € C, we have C(S,U) = b(7S —oLam YU ).

mef- We have E(yS —OLam yU) = b(l(yS —OLam yU)) = é(Li(yS —OLam yU)) = é(lvys —OLam yU) =
C(yS,yU) = C(S,U).

O

4.2 A commutative strong monad on C

The ¥ -category C has a commutative strong monad. In the following we write [ €™ prod for Cand 7€
for C. We write [SethP]pmd for the full subcategory of product-preserving functors of Set?”. Consider
the following diagram.

Uy
CP &— —— Cop
Set™ " 2 N

. A i
L‘U\J - L\L]\l
cor 2 e
[Set ]prod T [4// ]prod'

We define the ¥ -functor ﬁo/ [V COp]prod — [SetCOp]prod by restricting the domain of Uy to [# "] prod. Here
[SetCOP]pmd is the full ¥ -subcategory of smooth ¥ -functors. Similarly, A [SetCOp]prod - [V C()p]pmd
is a restriction of A. We have a monoidal adjunction L - j, since [SethP]prod = [SetCOp]i,rod, the full
subcategory of product-preserving functors, is reflective in Set?” = Set€”. We write T = A’ ol .
Observe that T is T with a restricted domain.
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Proposition 4.10. By definition, we have ioA = Ao jand joUs = Upoi, therefore ioT =T oi. Moreover;
Uy oL~ Lol
Theorem 4.11. We have a ¥ -adjunction 70/ HA [SetCOp]prod — [”f/COp]pmd. And ﬁo/ is strong monoidal.

Proof. Forany X € [#C" 04,7 € [Set™" ] prod, We have

[Setcﬂ (Uo'X,Y) = Set™ (jU'X, jY) = Set™ (TpiX , jY)

prod
= 3y C (ix AjY) =2 YO (iX, iNY) = [VC""] [(XCAY),
pro
The ¥ -functor Uy’ is strong monoidal. For any F,G € [ € prods We have Uo' 12Tyl =1 and
U0 (F @Lam G) = Up L(iF ®pay iG) 22 LUy (iF @pay iG) = L(UpiF @pay UpiG)

Theorem 4.12. There is a ¥ -natural transformation p : LoT — TolL.

Proof. For any F € C, let nr: F — iLF be the unit and & : LiF — F be the counit (which is an
isomorphism). We define pr to be the composition LT F MU P TiLE S LITLF 7% TLF. O

The natural transformation p is one of the components for defining the strength for T.

Theorem 4.13. The ¥ -functor T is a commutative strong monad.

Proof. Forany F,G € C, the strength of T is given by
F @Lan TG = L(iF @payiTG) = L(iF ®pay TiG) 25 LT (iF ®pay iG) £ TL(iF ®@pay iG) = T (F @Lam G).
Note that 7 is the strength for 7. The verification of the strength diagrams is in Appendix O

Similarly to Proposition , we have the following theorem for T.
Theorem 4.14. For any F,G € (Nj, we have the following V -natural isomorphisms.

é(Fv TG) = [Setcop]prod (ﬁO/F, 7OIG) = [Sethp]prod(FOa GO)~

Proof. We have C(F,TG) = C(F,ATUy G) = [Set®” | proa(To F, Uy G) == [SetQ” | roa(F°, G°). Note that
by Theorem , [SetCOP]pmd = [SetQOp]pmd. O

4.3 Dynamic lifting in C

Since C has coproducts and C is a reflective subcategory, the coproduct of A, B € CisdefinedasA+'B=
L(iA+iB). In C, we define Bool := yI +'yI = L(yI +yI) and Bit := y(Bit), where I, Bit € C. There exists
maps zero,one : yI — Bit in C. We are now ready to define a map for dynamic lifting.

Theorem 4.15. There are ¥ -natural transformations init : Bool — Bit and dynlift : Bit — TBool in C
such that the following diagram commutes.

Bit

V ldynlift

Bool L> TBool
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Proof. We define init = [zero, one] : Bool — Bit. Firstly, we want to show thatjinit~: TBool —>~TBit~is an
isomorphism. Using Yoneda’s principle, we just need to show C(F,T'init) : C(F,TBool) — C(F,TBit)
is an isomorphism for any F' € C. By Theorem , this is equivalent to showing that

SetQ™ ] roa (F,init?) : [Set" ] roa (FO, Bool®) — [Set®™" ] 0a (FP, Bit?)

is an isomorphism. This is the case because the Lambek embedding x : Q — [SethP]pmd preserves
coproducts, Bit =7 +1 € Q, and the map init’ : k7 + kI — k(I +1) is an isomorphism in [Set?" ] ,oa. We
therefore define dynlift as the composition (Tinit)_l o7 : Bit — TBit — TBool. As a result, we have the
following commutative diagram.

Bool L> TBool

b e,

S N ~
Bit TBit — TBool
! " G 00 0

4.4 Cis a model for Proto-Quipper with dynamic lifting

Recall that the category Q is enriched in convex spaces, i.e., the hom-sets of Q are convex spaces and
the composition is bilinear with respect to the convex sum. We have the following theorem, whose proof
is in Appendix

Theorem 4.16. The category [SetQUp}pmd is enriched in convex spaces. Moreover, the Lambek embedding
K:Q<— [SetQOp]pmd preserves the convex sum in Q.

The above theorem implies that for any A, B € C, the Kleisli-hom E(A, TB) is convex because of the
isomorphism C(A,TB) = [Set®"],10a(A, B®) from Theorem We are now ready to state our main
theorem (see Appendix [H]for the proof).

Theorem 4.17. The ¥ -category C is a model for Proto-Quipper with dynamic lifting, i.e., it satisfies
conditions|aHh)in Definition

5 Conclusion

We constructed a categorical model for dynamic lifting using biset enrichment. We defined a biset-
enriched category C, which combines the categories M and Q. We then considered the full subcategory
C of smooth functors and showed that C is a reflective subcategory in the enriched presheaf category of
C. Finally, we proved that C is categorical model for dynamic lifting in the sense of [7].
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A Enriched symmetric monoidal categories

Definition A.1. Let ¥ be a symmetric monoidal category. A ¥ '-category A is symmetric monoidal if it
is equipped with the following:

* There is an object I, called the tensor unit. For all A, B € A, there is an object A ® B € A. Moreover,
for all A;,A,,B1,B; € A, there is a map

Tensor : A(A1,B)) @ A(A2,B2) = A(A; ®A,, B ® By)

in 7. The tensor product is a bifunctor in the sense that Tensor o (14 ® ug) = uasep for the identity
maps ua,ug, Uszp, and the following diagram commutes for any Ay,A;,B;,B,,C1,C; € A.

A(A1,B1) @ A(A2,B) @ A(B1,C1) @ A(B2,C) —=%5 A(A1,C1) © A(A2,Cr)

lTensor@Tensor lTensor

A(A; ®A2,B1 ®B) @ A(B1 ®B1,C1 ®Cy) —— A(A; ®A2,C1 ®C,)

* There are the following ¥ -natural isomorphisms in A and they satisfy the same coherence dia-
grams as for symmetric monoidal categories, and analogous naturality conditions.

Ih:1®A—A
rA TAQI— A
Vap:A®B— B®A
oapc: (AQB)®C—A®(BRC)

If the ¥ -category A is symmetric monoidal, for all maps f : A; — Bj,g : Ay — By in A, we write
f®g:A; ®Ay — B ® B, as a shorthand for the following composition.

Tensor

Ifgg A(A1,B))®@A(A2,By) = A(A1®A2,B| ®By)

B Biset-enriched functor categories
Notations. Let A, B be ¥ -categories. For all A, B € A, we have
A(A7B) = (A(AvB)OaA(A>B)1a(pA : A(AaB)l — A(AaB)O)

So we write A —; B := A(A,B); and A —¢ B := A(A,B)y. Moreover, for all f: A —; B, we have
o*(f) : A —¢ B. A ¥ -functor F : A — B gives rise to the following commutative diagram for all
A,BEA.

Fl
A(A,B); —=5 B(FA,FB),

[ [

FO
A(A,B)y —= B(FA,FB),
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For all f:A — B, we have FAI,Bf : FA — FB. Similarly, for all g: A —¢ B, we have FIBBg :FA —o FB.
For any ¥ -functors F,G : A — B, we define a biset (F = G,F =1 G,p:F = G — F =( G) as
follows.

F=0G:={(Ba:FA —0GA)aca | VA,BEA,Vg:A = B,BpoFlg = GSpgoPa}

F=1G:={(a4:FA—1 GA)pcr | VA, BEANf:A— B agoFizf =G\zfooy,
VA,B€ A Vg:A — B,(pB(OCB) OFXBg = Gngo(pB(OCA)}

p((OtA : FA —1 GA)AEA) = ((PB(OCA) :FA —0 GA)AGA F = G—F =0 G

Proposition B.1. Suppose A,B are ¥ -categories. Since the category of bisets V' is complete, the functor
category B? is ¥ -enriched. For all ¥ -functors F,G : A — B, we have

BA(F,G) := AEAB(FA,GA) ~(F=0G,F=>G,p:F=,G—F=(G)

Proof. By definition of end, we have the following equalizer diagram in 7.
u
Jaca B(FA,GA) = eq(u,v) " Tlaea B(FA,GA) — 3 TlipeaA(A.B) = B(FA,GB)

Note that u = (curry(co (4 X Gag)))a e, Where co (14 x Gyp) is the following.

s X Gap

(Il B(FA,GA)) x A(A,B) "%, B(FA,GA) x B(GA,GB) —— B(FA,GB)

We have v = (curry(co (7g X Fag)))a,BcA, Where c o (7 X Fyp) is the following.

g X Fap

(TIuB(FA,GA)) x A(A,B) —2“*%, B(FB,GB) x B(FA,FB) —“— B(FA,GB)

We can show ([yco B(FA,GA))1 = eq(u1,vi) = F = G and ([,.o B(FA,GA))o = eq(uo,vo) = F =9
G. O

Theorem B.2. The biset-enriched categories Set®" and Set®” are isomorphic.

Proof. Let us define a ¥ -enriched functor Q : Set®” — Set?™. On objects, Q(F) = FO for any F €
Set®”. Since F : C°P — Set is uniquely determined by F°, the function Q is bijective on objects.

Suppose F,G : C°P — Set. We claim that Set®” (F,G) = Set®” (F°, G°). This will allow us to define
Qr G to be this isomorphism. To show Set®” (F,G) = Set®” (F°, G), first of all, we have

Set?” (F*,G°) = (X,X,1d),
where
X ={(as: F'A = G°A)scq | VA,BEQ,Vf:A = BE€Q,apoFf =Glpfoa}.

Next,
Set® (F,G) = (F = G,F =( G, p),
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where
F=9G= {((XA 1 FA — GA)AGC ’ VA,Be C,Vf:A—yB¢€ C,(XBOFXBf: GngO aA} =X

and
F=1G:={(as:FA =1 GA)pca | VA, BECVf:A —| B agoFizf =Gzfooy,

VA,B € C,Vg:A —B,05 (0p) o Flpg = Gpg0 05 (ay)}.

Since F{ p = F}) yo 9", and 95 = 1d, and 9" (f) : A —¢ B for any f: A —| B with A,B € C,
therefore VA, B € C,Vg: A —o B, 05 (o) oF)e= Gngoq)S“(OtA) implies VA,B€ C,Vf:A — B,apo
Flaf=Glyfoou. SoF = G=F =7 G=X and p = Id. O

C Convexity

Let [0, 1] denote the real unit interval.

Definition C.1. A convexity structure on a set X is an operation that assigns to all p,q € [0,1] with
p+q=1andall x,y € X an element px+ gy € X, subject to the following properties. Throughout, we
assume p+q = 1.

(a) px+gx=xforallx e X.
() px+qgy=qy+ pxforall x,y € X.
(¢) Ox+1ly=yforall x,y € X.

@) (a+b)(s5x+ 25y) + (c+d) (22 + “Lw) = (a+0)(Gax+ -2) + (b +d) (329 + 54w),
where a,b,c,d € [0,1] with a+ b+ ¢+ d = 1 and all denominators are non-zero.

Remark. Property (d) can best be understood by realizing that both sides of the equation are equal
to ax + by + cz+ dw, decomposed in two different ways into convex sums of two elements at a time.
In the literature, we sometimes find a different, but equivalent condition of the form s(px+ gy) +rz =
spx+(gs+r)( qsqir v+ qslrz). The latter axiom is arguably shorter, but harder to read.

We often expand the binary + operation to a multi-arity operation, i.e., }; p;x;, where }; p; = 1 and
x; € X for all i.

We say that a category A is enriched in convex spaces if for all A,B € A, the hom-set A(A,B) is
convex, and composition is bilinear, i.e., for all f,g € A(A,B),e € A(C,A),h € A(B,C) and p,q € [0,1]
with p+¢g =1, we have

(pf+qg)oe=pfoetqgoe

and
ho(pf+qg)=phof+qhog.

Theorem C.2. Let A be a symmetric monoidal category with a coproduct I + I, such that tensor dis-
tributes over this coproduct. The following are equivalent.

1. The category A is enriched in convex spaces.
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2. There exists a family of maps (p,q) : I — I+ 1, where p,q € [0, 1] with p+ q = 1, such that the
following diagrams commute:

——5 T+1 inj
o qp\)‘ l[mj2 inj;] -~ +

(o,1)

I1+1
{at+b,c+d) (atc,b+d)
I+1 I1+1

(atp atm)+(ctas C+d>>l l«ﬁ,#c%«b’ﬁ,,’%)}

I+ +T+1) — 5 (I+1)+ (I +1)

Here, in the last diagram, we have a,b,c,d € [0,1] with a+ b+ c+d = 1, and we assume the
denominators are non-zero. The map “iso” is the canonical isomorphism (A + B) + (C + D) =
(A+C)+(B+D).

Proof. For the left-to-right implication, suppose A is enriched in convex spaces. We can define
(p,q) == pinj, +qinj, : 1 - 1+1.
It is easy to verify that this definition of ((p,q)) satisfies the four diagrams above.

We now focus on the right-to-left implication.

* First we need to show that A(A,B) is convex for all A,B € A. Given f,g € A(A,B), we define
pf +qg as follows.

At A@(p.q)

A AR A4A [fg]

A+ S ARI+ART 22 A4 4 L5,

* pf+qf = f. This holds because the following diagram commutes.

A2 A1V Ao (41 4 AcT+AeT 2 a1 P p

(1d,Id]
Jf Jf@l l feU+I) lf @I+ fel f +fl /

B2 Bor ™YY o (1+1) —4 Bol+BoI > B+B

\ lB@ [1d,1d]
[1d,1d]

B®I

* pf+qg = qg+ pf. This holds because the following diagram commutes.

A2 Ao Y 4g 1+1) Ay AmTitAel 2 ava P B

ARU+]) —L s AoI+ART 2 A+ A
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* 0f + 1g = g. We have the following commutative diagram.

(D) (S + 58) + (e d) (igh+ w) = (a+ (G + 75 + (b+d) (e + ).
Letus write o = 47 f + ﬁ gand = “aht dw We have the following commutative diagram.

A2 o A ) s AgI+Ael 2 apa 2P g
Aoty s+ )|
Ao ((I+1)+
|

AU+ +A®(I+])

d +dl

ARI+ARD) +(ARI+AR])
(/1+7L)+(k+/l)l
(A+A)+(A+A) — LI g g

Thus
(@+b) (5% +258) + (c+d) (Z5h+ -Lw)
= [Id,Id] o ([f,g] + [A,w]) o (A +A)+ (A +A))o(d+d)od

o (A® ({545 ) + ((far cfal)) o (A (a+b,e+d)) o A"

Similarly, we can show that

(ate)(Gief + z5h) + (b +d) (5758 + 5gw)
= [ld,Id]o ([f;h] +[g;w]) o (A +A) + (A +4))o(d +d)od

o (A® ({54 a5eh + (gt sraM)) o (A® (a+c,b+d))o A",

Thus we can show

(a+b) (35 f+ 2258 + (c+d) (z5h+ - Lw) = (a+ ) (G f + 252h) + (b +d) (5258 + 555w)
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by the following commutative diagram.

A®I
A®«W A®{a+c,b+d)
AR (I+1) AR (I+1)
A% 250+ 24)) A% 75 )+ 52 5%)
AR ((I+1)+(I+]1)) A%iso AR ((I+1)+(I+1))
d d
AQU+D)+A@(I+1) AU+ +AR(I+1)
d+d d+d
AQI+AR) +(ARI+ARI) iso AQI+ARD) +(ARI+ARI)
(A4+A)+(A+4) (A+A)+(A42)
(A+A)+(A+A) iso (A+A)+(A+A)
(£ ]+ [.w] [F W)+ 4]
[1d,1d] [1d,1d]
B+B B B+B

* (pf+qg)oe=p(foe)+q(goe). This is by the following commutative diagram.

C—“>A A0l P Ao (141 4 AvT+Anl 25 Aya T,

)L—I /
e®lT ®(1+I)T e®1+e®lT +6T [oe.goc]

col Y co1+1) —4 col+col 2 cyc

)L—l

e ho(pf+qg)=p(hof)+q(hog). This is by the following.

A2 A0 1™ Y ag (41— AvT+Anl 2 apa LY p c O

[hof Jiog]

Theorem C.3. The category [SetQOp]pmd is enriched in convex spaces. Moreover, the Lambek embedding
K:Q<— [SetQOp]prod preserves the convex sum in Q.

Proof. By Theorem [C.2](2), there exists a map (p,q)) : I — [ +1in Q for any p,q € [0,1], p+g =1,
and it satisfies the four diagrams. Since k preserves coproducts in Q, the map x{((p,q)) : kI — xI+' kI
in [SetQOp]pmd also satisfies the four diagrams in Theorem (2). Therefore [SethP]prod is enriched in
convex spaces.

For all f,g € Q(A,B), the convex sum pf + gg € Q(A, B) is defined to be the following.

At A®(p.q)

A Awr 8l p

ASU+D) S AT+ART 2 A+A

Since K preserves coproducts in Q and it is strong monoidal, we have k(pf + qg) = px(f) +gx(g) €
[Set?” ] 10a (KA, KB).
O
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D Proof of Theorem

In this section, we assume #  to be a complete, cocomplete, symmetric monoidal closed category. The
following proposition is due to Kock [[13]].

Proposition D.1. Let T : V' — ¥ be a ¥ -monad. Then T is a strong monad with strength t : A ®
TB — T(A® B) given by the following commutative diagram. Note that 1 is the unit of the adjunction
- ®AHA — —.

curry( )

TB—-T(A®B)
[
B—oA®B
Theorem D.2. Let T be a strong monad on ¥ and F : A°°® — ¥V be a V' -functor. For all A,B € A, we
have maps
Fap:A(B,A) — FB —o FA
and

(TF)ap: A(B,A) — TFB —o TFA.

We have the following commutative diagram.

A(B,A)®TFA
l mm’)ﬂ:w
A(B,A)®FA)

Tuncurry Fup)

Proof. By currying the diagram above, we just need to show the right triangle commutes in the following
diagram.

l \
Fup TF AB

FA —o A B, A ®FA TFA —o T(A(B,A) ®FA)
\QABA YRFA

Mﬂuncuny Fas) TFA—oTuncurry(Fy5)

FA — FB TFA—TFB

Tra,rB

Note that the bottom square commutes because of the # -naturality of 7. The left triangle commutes by
the property of monoidal closedness. The front triangle commutes by definition of (TF)p. The back
triangle commutes by Proposition O

Theorem D.3. Let F : AP QA — ¥ be a ¥ -functor and let T be a strong monad on V. Then there
exists a natural map

AEA AEA
gF;/ TFAA) T [ FAA).
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Proof. Recall that by definition of coend, we have the following coequalizers.

p1
Yasca A(B,A) @ F(A,B) HT YacaF(A,A) —— [*AF(A,A)

LrpcaA(BA)OTF(AB) — 3 T4 TF(A,4) — [*ATF(4,4)
Pz

For any A € A, the functor F(A,—) : A — ¥ gives rise to a map
F(A,—)pa:A(B,A) — F(A,B) — F(A,A)

for each B € A. The map p; is defined as the coproduct pairing [inj, o uncurry(F (A, —)ga)]a sea. For
any B € A, the functor F(—,B) : A°° — ¥ gives rise to a map

F(—,B)ap: A(B,A) — F(A,B) — F(B,B)

for each A € A. The map p, is defined as the coproduct pairing [injz o uncurry(F(—,B)as)|a pea. The
maps py, p5 are induced similarly.
Consider the following diagram.

[ATF(A,A) ~mmmmmmmme e O » T [*F(A,A)
Y TF(A,A) [Tiniala TY, F(A,A)
P iﬁ” : [Tinias], » TP ’w” :

YAsA(B,A)®TF(A,B) ZA*B> YasT(A(B,A)®F(A,B)) — TYApA(B,A)®F(A,B)

Note that [Tinj,]4 and [Tinj, g]a g are coproduct pairings. The morphism ¢ : A(B,A) ® TF(A,B) —
T(A(B,A) ® F(A,B)) is the strength map for 7.

To show the existence of &, we just need to show Te o [Tinj,], o pj = Teo [Tinj,], o p5, which is to
show the bottom square commutes for pj and 7'p; (p; and T p,). This is the case because of the following
commutative diagram. Note that the left triangle commutes by Theorem[D.2]

AB,A)TF(A,B) 2% rraa) — ™ Ty F(4,A)

e I

T(A(B,A) @ F(A,B)) TY15A(B,A)@F(A,B)

Tinj, g

Note that p] (A, B) is a component of p| and p;(A,B) is a component of p;. By the universal property of
the coequalizer €/, there exists a unique arrow

AEA AcA
g;/ TFAA) T [ FAA). O
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Proposition D.4. Suppose F : A°? — V. For all B,C € A, the following diagram commutes.

A(C,B)®F(B) —%— [PA(C,B)® F(B)

uncurry(FBC)l /
Y

F(C)

Note that y is an isomorphism expressing the Yoneda lemma in the language of coends, and Fpc :
A(C,B) — F(B) — F(C), and eg is the unit of the coend.

Proof sketch. Note that the map uncurry(Fpc) : A(C,B) ® F(B) — F(C) is ¥ -natural in B. By the uni-
versal property of coends, there exists amap y : [® A(C,B) ® F(B) — F(C) such that the diagram above
commutes. Moreover, y is an isomorphism [11, Chapter 2.4]. O

Theorem D.5. Let T be a strong monad on V. For all F : A @ A — ¥, the map & : [ TF(A,A) —
T/ ACA (A,A) makes the following diagrams commute.

1.
[AF(A,A)
b
T [*F(A,A) < [ATF(A,A)
2.

JATTF(A,A) —s T [ATF(A,A) —°5 TT [AF(A,A)

I !

[ATF(A,A) : T [*F(A,A)
3. Suppose G: A — ¥V and A € A.
[BAA,B)Y® TGB ——— TGA
[ d

[T(A(A,B)© GB) —— T [*A(A,B)®GB

Note that y',y are isomorphisms induced by the Yoneda lemma.

4. Suppose F : AP QA — YV and X € V.

(J[AF(A,A)@TX —— T((J*F(A,A)®X)

E

[A(F(A,A)®TX)

b
¢

[AT(F(A,A)®X) —— T [*(F(A,A) ®X)

1%
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5. Suppose F : AP QA — ¥V and X € V.

[A (X ®TF(A,A)) ELEN [AT(X®F(A,A))

} !

X® [*TF(A,A) T [*(X®F(A,A))

lmaz F

X®T [*F(AA) —— T(X® [YF(A,A))

6. Suppose F : APQAPRQARA — 7.

A
[A [PTF(A,B,AB) <=5 AT [PF(A,BA,B) —— T [* [°F(A,B,A,B)

- I

[*BTF(A,B,A,B) ¢ T [*PF(A,B,A,B)

Proof. 1. We need to show that the following commutes.

[AF(A,A)

[y

T [*F(A,A) < [ATF(A,A)

Consider the following diagram. We write 1; for the map F(A,A) — TF(A,A) and 1, for the map
[AF(A,A) = T [*F(A,A).

[AF@A,A) LM (ATE@4,A)

up \5‘

e J T [*F(A,A)
YAF(A,A) E1 ¥, TF(A,A) Te
\\[Tinj/m
TY,F(AA)

We need to show that the top triangle commutes. Since e is an epimorphism, we just need to
show & o [ 0e =mnp0e. This is the case because the bottom triangle commutes and all three
square faces commute. The bottom triangle commutes by the universal property of coproducts.
The square with & commutes by definition of . Also note that ¢ oY 11y = [ m; oe is a property of
coends (see [L1} 4.2]).

2. The proof is similar to (1).
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3. Next we need to show that the following commutes (where y,y" are isomorphisms induced by the
Yoneda lemma).

[BAA,B)©TGB —'5 [PT(A(A,B)®GB)

! !

B
%
TGA o T ["A(A,B)®GB
The above diagram commutes because the following diagram commutes for all A, B € A.

A(A,B)®TGB - JBA(A,B)® TGB

uncurry TG BA
It
/ l o / l
TGA _____ A(A,B)® GB) ————=FGA [BT(A(A,B)®GB)
Tuncurry(Gpa T / TyT /
T(A(A,B) @ G(B T [PA(A,B)® GB

Since G and T'G are contravariant ¥ -functors, there are the following maps in 7.
Gpa : A(A,B) - GB = GA
(TG)BA ZA(A,B) —TGB=TGA

The bottom square commutes by the definition of &, and the back square (with e;,e;) commutes
by naturality of coends. The top and the front squares commutes because of Proposition[D.4] Thus
we just need to show that the left square commutes, i.e.,

C(C,B)® TFB —— T(C(C,B)® FB)

b

TFC
This commutes by Proposition[D.2]

4. Next we need to prove that the following commutes.

(J[AF(A,A)@TX —— T((J*F(A,A) ®X)

|

[A(F(A,A)®TX)

L
g

[AT(F(A,A)®X) —— T [*(F(A,A) ®X)

1

First observe that the following commutes (each arrow is canonical).

(XaF(A,A)@TX —— T((EaF(A,A)) ©X)

I

YA(F(A,A)®@TX)

|

YAT(F(A,LA)@X) —— TYA(F(AA)®X)

IR
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Now let us consider the following cube.

(J[AF(A,A)&TX T((JAF(A,A))®X)

T(e®X)

o~

(EaF(AA)®TX T((EaF(A,A)) ©X)

A(F(A,A)®TX)

IR

1R
—,

\

1R

YA(F(AA)QTX) It

Lat JAT(F(A,A)®X)

/ Te

YAT(F(AA)©X) il TYA(F(A,A)©X)

T [A(F(A,A)®X)

Note that the top square commutes, by naturality of . The bottom square commutes, by definition
of &. The left square involving } 4 7, [ commutes by naturality of coend. The right square and the
left top square commute for the same reason. For simplicity, consider the following diagram.

(LasAB,A)QF(A,B)®X 3 (L4F(AA)®X — ([AF(AA)®X
Yas(AB,A)®F(A,B)®X) T3 Ya(F(A,4A)®X) — [*(F(A,A)®X)

Note that the right square is the same square as the right square in the cube. And — ® X preserves
coequalizers. The left square commutes by naturality. This implies that the right square commutes,
by the universal property of coequalizers. Therefore the cube above commutes.

5. Next, we need to show that the following diagram commutes.

A (X ®TF(A,A)) ELEN [AT(X®F(A,A))

; !

X® [ATF(A,A) T [A(X @ F(A,A))

lld@é F

X®T [YF(AA) —— T(X® [*F(A,A))
First, observe that the following diagram commutes.

YAXRTF(AA) —— YAT(X®F(A,A))

I l

| 2

X@TY F(A,A) —— T(X®Y,F(A,A))
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Now let us consider the following cube.

Jt

JAX®TF(A,A)) JAT(X©F(A,A))

YA (X ©TF(A,A)) L _ YAT(X QF(A,A)) g
o X® [ATF(A,A) T [A(X®F(A,A))
X @Y, TF(A,A) Xet TYA (X @F(A,A)) ~

XQT [AF(A,A)

/ Te

X®TYsF(AA) T(X®YAF(A,A))

Note that the top square commutes by naturality of coends. The bottom square commutes by
naturality of 7. The left bottom and the right top square involving & commute by definition. The
left top and the right bottom square commute for the same reason. Consider the following diagram.

Yus(A(B,A)@XQF(A,B) T TAa(X®F(A,A) — [Y(XRF(A,A))

F F |2

X@Y45(AB,A)®F(A,B) 2 X@Y4F(A,A) — X@ [*F(A,A)

Note that the right square is the same square as the right bottom square in the cube under the functor
T. And X ® — preserves coequalizers. The left square commutes by naturality. This implies that
the right square commutes, by the universal property of coequalizers. Therefore the cube above
commutes.

. Let F: APRAPR®A®A — #. We now need to show that the following diagram commutes.

A
JA[PTF(AB,AB) =5 AT [PF(4,B,4,B) —— T [* [*F(A,B.,A,B)

I I

[*BTF(A,B,A,B) ¢ T [*®F(A,B,A,B)

First, the isomorphisms f, T f above are instances of so-called Fubini theorem for coends, which
also gives rise to the following commutative diagram for any F : AP @ AP QAR A — 7.

F(A,B,A,B) —" [**F(A,B,A,B)

b i

JPF(A,B,A,B) —= [* [°F(A,B,A,B)
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We have the following commutative diagram.

A BTRABAB) -5 (AT BR(ABAB) —— T [ [PF(A,B.A,B)

A i

[ABTF(A,B,A,B) [BTF(A,B,A,B) L TN T [BF(A,B,A,B) T [*BF(A,B,A,B)
e;\.BT

TF(A,B,A,B)

Note that above diagram commutes, by properties of the Fubini theorem, definition of &, ¥#-
naturality of coends, and because €/, ; is an epimorphism.
O

Theorem D.6. Let A be a ¥ -category. If T is a commutative strong monad on V' (the strength is given
by the map tap : AQTB — T(A®B) for any A,B € A), then T(F) =T oF is a commutative strong
¥ -monad on VA",

Proof. Tt is straightforward to verify that T is a monad. We define the strength 7 to be the following

composition.

- (A,B)EARA
(F ©pey TG)(C) = / A(C,A®B)® FA® TGB

f(AB (A,B) €A®A
/ (A(C,A®B)® FA® GB)

é A,B GA@A
—>T/ (A(C,A®B)® FA® GB)

=T (F ®pay G)(C)
Now to show that T is a commutative strong monad, we need to show the following diagrams commute.

®Dayr'

F _
F®DayG E— F®Day TG

L

T(F ®pay G)

To show this, we just need to show that the following diagram commutes for any C € A.

AB 1
JAEA(C,A®B) @ FA©GB —— " [ABA(C,A®B) @ FA®TGB

[

T([*?A(C,A®B)®FA® GB) . J*PT(A(C,A®B)® FA® GB)

Note that J*B 7’ is a shorthand for [**A(C,A®B)®FA®n. Similarly, [**1 is a shorthand
for f Ia(c.A=B)wFA,Ge 1N the above diagram. The bottom triangle commutes because of Theo-
rem[D.5(1). The top triangle commutes by properties of r.
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* We need to show that the following diagram commutes.

I®Day TF *> T I®Day
@F
Atp

If we unfold the definition of the Day tensor, we have the following diagram for any C € A.

[PA(C,19B)©TFB —s [BT(A(C.I®B)®FB)

[BA(C,B) ®TFB*>IB (A(C,B)® FB) T [BA(C,I®B)®FB

TFC —— = T [PA(C,B)®FB

Note that for any C € A, the following commutes by naturality of ¢.

[PA(C,10B)©TFB — [BT(A(C,1®B)®FB)

S| |17

[PA(C,B)®TFB —" 5 [BT(A(C,B) @ FB)
Note that I = A(—,1) € ¥A”, and [t is a shorthand for [* tA(c.12B),rp and [ Ap is a shorthand for
[P A(C,Ap) ®1drrp, and [ TAg is a shorthand for [® TA(C,Ag) ®Idrp, and [ is a shorthand for
fB IA(C.B),FB-
The bottom square commutes because of Theorem [D.5[3). The right square commutes by the
naturality of &.

* Next we need to show that the following diagram commutes.

F @pay TTG —'— T(F @pay TG) — TT(F ®pay G)

\LIdF ®Dayu \L/J

F ®pay TG ! T(F ®pay G)

The above diagram commutes because for any C € A, we have the following commutative diagram.

[ABA(C,A®B)® FAQ TTGB BELIN [*BT(A(C,A®B) @ FA® TGB) —— T [*B(A(C,A® B)© FA® TGB)

L['Id@u lf Tt lT Jt

JABA(C,A®B)® FA® TGB JABTT(A(C,A®B)® FA® GB) £, T [T (A(C,A® B) © FA® GB)

s % |re

JAET(A(C,A® B) ® FA® GB) LN T [*(A(C,A®B) @ FA® GB) +—— TT [**(A(C,A® B)© FA® GB)

Note that the top right square commutes by naturality of &, the bottom diagram commutes by
Theorem [D.5](2), and the left diagram commutes by properties of 7.
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* Next we need to show that the following diagram commutes.

(F ®Day G) ®Day TH ! ” T((F ®Day G) ®Day H)
la lTa

_ 1dp®payt _ _
F @pay (G Opay TH) ——3 F @pay T(G @pay H) —— T(F @pay (G @pay H))

For any C € A, we have

- BEA [(XY)EA®A
((F ®pay G) @pay TH)(C)= / / A(C,(X®Y)®B) ®FX  GY ® THB

and

B XeA (Y.B)EARA
(F ®Day (G @pay TH))(C)g/ / A(C,X® (Y ®B)) ® FX © GY ® THB

XY,B A
g/ FX®GY®THB®/ A(A,Y ®B)®A(C,X ®A).

Consider the following diagram. We need to show that the outermost diagram commutes. Note
that [y, T [y,a,d are all isomorphisms.

[PV T(A(C(X®Y)©B)© FX @ GY © HB)

JPXYA(C(X©Y)©B) 2 FX©GY © THB L
T [PXYA(C,(X®Y)®B)© FX @ GY © HB

[BXYA(CX @ (Y@ B) @ FX @ GY e THE ——L—y (BXY 7(A(C, X @ (Y @ B)) @ FX © GY % HB)
: Tla

J**A(CX®A)@FX® ["PA(AY ©B)© GY @ THB T [**YA(C.X® (Y ©B))® FX®GY @ HB
P
J**ACX@A) 0 FX® ["PT(AAY ©B)© GY @ HB) T [*YE AA(CX®A)@A(AY @B) @ FX ©GY @ HB

e

JAYACX @A) SFX ST "PAAY ©B)2GY @ HB —Ls [P T(A(C,X @A) 2 FX® [P AAY @ B) & GY © HB) —— T [*YA(C.X®A) 2 FX @ ["PA(A,Y © B)© GY 2 HB

Note that the top square and the top right square commute by naturality of 7 and £. We just need
to show that the bottom diagram commutes. The expanded bottom diagram is the following.

T [PXYA(CX @ (Y ©B)©FX ©GY @ HB

JPXYA(CX® (Y ©B) @ FX ©GY 9 THB It [PXYT(A(C.X @ (Y ©B)) @ FX @ GY © HB)

[PV AAY 2 B)© A(C. X ®A)) @ FX © GY @ THB I PYT((A ALY © B) 9 ACX 9A) 9 FX @GY @ HB) —— T [*XY ([P A(A,Y ©B) 2 A(C.X ©A)) © FX % GY O HB

JPXY [AA(AY ©B) © A(C.X ©A) @ FX © GY © THB) e,y A (a(a Y ®B)@A(C.X®A)®FX ®GY ® HB) LN [PXYT [AA(AY ©B) @ A(C.X ©A) © FX © GY © HB) LN T [BYY [A(A(AY @ B) @ A(C.X ©A) @ FX © GY @ HB)

PPYT(AALY ©B)© AC.X ©A) & FX ©GY © HB) —s [PV T [PY(A(A,Y 9 B) ©A(C.X 9A)© FX ©GY © HB) ——s T [P [ (A4, Y ©B) & A(C

[P AX (ALY ©B) ©A(CX ©A) @ FX & GY & THB) —Ly [57 " X ©A)©FX ©GY @ HB)
(A(C.X®A)@FX ®A(A.Y ®B)@ GY @ THB) e, pax [P T(A(C.X ©A) @ FX ©A(AY @ B)© GY @ HB) JELEN AT [BY(A(C.X ©A) @ FX © A(A,Y © B)© GY © HB) LN T [ [PY(A(C. X ®A)© FX @ A(A.Y @ B) © GY @ HB)

s
- e il

[AX [BY(A(C,X ©A) @ FX @ T(A(A,Y @ B)® GY ® HB)) -

J*YA(C.X @A) 2 FX @ [*Y(A(A.Y ©B)© GY © THB)

l“" I
[,

YA X@A) @ FX @ [P T(AMY ©B) @ GY @ HB) 1225 AXA(C.X @A) FXaT [*Y(A(AY 2 B)@ GY 9 HB) —L s [*YT(A(C.X©A) @ FX & [PV (A(A.Y ©B) & GY @ HB)) —— T [**(A(C,X ®A)® FX & [* (A(A,Y @ B) © GY © HB))

Our goal is to show that the outermost diagram commutes. Note that all the inner diagrams com-
mute, by Theorem [D.3[4)—(6) and naturality. Therefore the whole diagram commutes.

Lastly, since ¥ A% isa symmetric monoidal ¥ -category with ¥r : F ®pay G — G @pay F, We can
define the costrength as the following for any F,B € ¥A”.

0rG = TY6FotGF o Yrrg: TF @pay G — T(F @pay G)
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We need to show that the following diagram commutes.

For any C € A, the above diagram can be expanded to the following diagram. We need to show
the outermost diagram commutes.

[*PAC.AB) S TFASTGE

J*A(C.B2A) S TGBETFA I**T(A(C.A%B)

T )
It commutes because every inner diagram commutes (by naturality and Theorem [D.3]2)). O

E Proof of Theorem

We write [SetQOP]prod for the full subcategory of Set®” consisting of product-preserving functors. We
write L : Set?" — [Set?”|,oq for the left adjoint of the inclusion functor i : [Set®” |yoq — Set?”. We
write 1 : Id — iL for the unit of the adjunction.

Definition E.1. We define a function L : C — C as follows.
e For any F € C, we define L(F) = G such that for all A € C,

G(A) = ((ILFO)A, (FA)1, (Mpo)a o ha : (FA)1 — (iLF°)A) € ¥V,
where hy : (FA); — (FA)o and (Ngo)a : F°A — (iLF?)A.
For any A,B € C, we define Gg p and G}w by the following.

f €M (A,B) L‘B (Flgf,GLF®)(Japf)) € ¥ (GA,GB)

IJAB JV/PO
0

Japf € QP(A,B) e (iLF®)(Jagf) € Set((iLF°)A, (iLF®)B)

Note that G is smooth, hence G € C.
Proposition E.2. L: C — C is a ¥ -functor:
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Proof. We just need to show that for all F,G € C, there is a morphism
Lrg : C(F,G) — C(LF,LG)

in . This is provided by the following commuting square in Set.

{(aa : FA — GA)pcc | @ € ¥-Nat(F,G)} i {(Ba: (iLF)A — (iLG)A)scc | B € ¥ -Nat(iLF,iLG)}

J !

0] i/O 0]
SetQ ’ (FO7 GO) re [SetQ p] (LFO7 LGO)

prod

We write ¥'-Nat(F,G) for the set of ¥ -natural transformations from F' to G. The arrow EOFG is given by
the functor L : Set®” — [SetQOp]prod. And the arrow IZ}FG is given by extending the commuting square
o4 : FA — GA with 1 : Id — iL, as in the following diagram. Note that for each ¥ -natural transformation
a € ¥ Nat(F,G), we have a” : FO — G°.

(FA)] L (GA)]

L,

(FA)y —=— (GA)y
|mo)s |
(iLF")A o (iLG")A
O

Theorem E.3. The ¥'-category Cisa reflective 'V -subcategory of C, i.e., the inclusion ¥ -functor i :
C < C has a left adjoint L.

Proof sketch. We need to show C(F,iG) = C(LF,G) for any F € C,G € C and it is ¥ -natural in F and
G. We just need to show the following diagram commutes.

¥ -Nat(F,iG) ——— ¥-Nat(iLF,iG)
SetQ” (F0,iG%) —— [Set®” ] roa (LFP,G°)

The bottom arrow is an isomorphism because L - i. The top arrow is an isomorphism because for any
A € C and ¥ -natural transformation y : F — iG, we have the following commutative diagram.

(FA) — s ((iG)A),

| |

(FA)y —*— ((iG)A)o

ol

(iLF%)A
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F Day’s reflection theorem for C

Theorem F.1. IfH € C, then G —opay iH is also a smooth functor for any G € C.

Proof. Suppose H € Cand G € C. For any C € C, we have

(G —opuy iH)(C) = | | GA=iH(CRA)= C(G,iH(C® —)).

Thus

C(G,iH(C®—)) = Set®” (G, (iH)’(C® —))

12

(G —opay H)(C)o

I

o Set(GYA, (iH)*(C®A)) = (G° —opyy (iH))(C),

where G° —opay (iH )% is an exponential in Set?”. Since H° preserves products, so does G° —opay (iH )0,
thus G —op,y iH is smooth and G —op,y iH € C. The functor G° —opay (iH )0 preserves products in Q°P
because for any C;,C, € C, we have

(G® —opay iH)(C1 +C2) = /A Set(GYA,iH((C1 + C) ®A))

1

/ Set(GYA,iH*(C, ® A+ C, ®A))
A

I

/ Set(GYA,iH?(C, ® A) x iH(C, ® A))
A

I

/ Set(G%A,iH(C; ®A)) x Set(G°A,iH(C, ® A))
A

I

/ Set(GYA,iH(C) ®A)) x / Set(G°A,iH(C, ® A))
A A

= (GO ~—ODay iHO)(C1> X (GO ~—ODay iHO)(Cz). O

The above theorem implies that for any G € (~:, F € C, the unit NF—opyyiG * F —oDay iG — iZ(F —ODay
iG) is an isomorphism, which gives rise to the following theorem.

Theorem F.2. Forany F,H € C, we have

- Z‘(TIF®DayH) o o~
L(F®pwH) =  L(LF ®payH).
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Proof. Forany G € C, we have the following commutative diagram.

E(Z(nF®DayH)sG)
_—

C(L(iLF ®pay H),G) C(L(F ®payH),G)

o~ o~

E(T'F(X)DalyPIﬂ.G)

C(iLF ®pay H,iG) C(F ®pay H,iG)

o~ o~

C(np,H—opyiG) —
_—

C(iLF,H —opyy iG) C(F,H —opay iG)

C(LF N g,y ic) C(F N —opyyyic)

— o~ ~ é L(H—op,,iG
CULF,iL(H —opay iG)§ "M =2 6 (F L (H —opay iG))

o~

C(£F7Z(H —©Day lG))

C(F,iL(H —opay iG))

The top two squares commute by naturality of the adjunctions, the third square commutes by the bi-
functoriality of C(—,—) and the bottom triangle commutes by properties of the adjunction L - i. O

With the help of Theorem one can verify that L is strong monoidal, e.g., for any F,G € C,

LF @pam LG = L(iLF ®payiLG) 2 L(F ®pay G).

G Proof of Theorem

We write B :ioT — T oi to denote the isomorphism io 7 2 T oi.

Theorem G.1. The following diagrams commute.

1. Suppose F € C.

iF *> iTF

\lﬁ

2. Suppose F € C.

- inT .—
iF M iTF

T
K J/P
TLF
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3. Suppose F € C.

iTTF P TitF P TTiF

b b

iTF TiF

4. Suppose F € C.
~—— p ~ o~ 'i:p ~ o~
LTTF —— TLTF —— TTLF
lzl’ﬁ J{MT

LTF

5. Suppose F € C.
LTF 2 [TiF
[+ l

TF «+—— TLiF
Te

6. Suppose F € C,G € C.

[T(TG o FI P T (TiG o F) 27 [T(F @0 TiG)

\ l\

TLTG@pF) —'5 TL(F ®D1TG)TL(L>®DB)TL(F @pTiG)

7. Suppose F,G € C.

LF&pTG) —E s IT(FonG) — s TLF op G LN T (F @pilG)

lz(munil) pT

L(F @pilTG) " 220 (F w0 iTEG) 28 [ (F 0y TiLG) —Es IT(F 90ilG)

Proof. 1. We have

C(iF,TiF) = C(iF, AUyiF ) = C(UyiF, UpiF ) = C(jUy F, jUs F) = C(Uy'F, Uy F) = C(F,TF)

2. If we unfold the definition of p, we have the following diagram.
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~ i T A —
ir 2 ITF
LTni

LTiLF

Therefore we just need to show the following diagram commutes (and indeed it does).

iF M LiiF L LiTLF

\lfls

IF -1 TLF

3. Since each component of p and B is an identity, the diagram commutes.

4. If we unfold the definition of p, we have the following diagram.

il 1

irrr % iriitE P LTiTE —f s TITF
jma LTLTn TLTn'
ILTF LITITiLF —%— TLTiLF
ITnt LiTLB™! TLB!
LTiLF LITLITLF —%— TLITLF
B! LiTe Te
LITLF " LITTLF —%— TTLF
e
TLF W7

All of the squares commute by naturality. We just need to show the left diagram commutes. It
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commutes because the following commutes.

iTLITF

TTF *> TLLTF
o T il -
TF TTiLF =1 TilTilLF iLTn'
—1
IL/ J/Tﬁ 1 lTliﬁ\fV{‘
o iL ~ v o~
TilLF TiTLF ' TiliTLF iTLTIiLF
—1
ﬁ—l iﬁ71 \\\\Ji\$ ifiﬁ’l
iTLF +—— iTTLF _ iTLITLF
1y iTe

The above diagram commutes, because all the squares commutes by naturality. The bottom left

corner diagram commutes by (3). Note that i€ o 'l = Id.
5. If we unfold the definition of p, we have the following diagram.
7. LB .
LiTF —— LTiF
LB ITniL
LTiF <—— LTiLiF
LTie
Lg~! LB~!
LiTF <—— LiTLiF

LiTe
e

€

TF +—— TLiF
Te
The bottom two squares commute by naturality. The top square commutes because i€ o't = Id

6. See the following commutative diagram.

[T(TGop P C LT (TiGop F) 7 IT(F op TiG)
L

P TL(TiG®opF)

TZ(I}W ﬁ)
TL =~ ~TL(F®pB)~

TL(TG®pF) —15 TL(F 9piTG) ~ 2 TL(F ©pTiG)

7. Consider the following diagram.

il
LFepTG) —L s IT(F&pG) —P—s TLF 20 G) ") FL(F @pilG)
L(FeTn't) IT(Fon'L) pT

|uronn
L(F o) zLTG)L( R F(F 0piTLG) [ LFnTiLG) I FT(F 9pilG)
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Note that the very right diagram and the middle square commute by naturality. The left diagram
commutes because the following diagram commutes (with p unfolded).

il
(F ®pTG) LreTn’) L(F®pTilG)
L(F®pp)
(F ©pilTG) L(F @pTiLG) K090l Df (F @ iTLG) ’

I F@n’L L(Fen'™)
L(FiLTn™)

L(F ®p lLTlLGZ) *> L(F @piLiTLG) — e L(F ®piTLG)

O]

Theorem G.2. The ¥ -functor T is a commutative strong monad. The strength is given by frG : F ®Lam
TG — T(F @Lan G) for any F,G € C.

Proof. Forany F,G € C, we define 7, by the following composition.

F @Lam TG = L(iF @pay iTG)

lR=

L(iF ®pay TiG) - L(T(iF ®pay iG)) & T(L(iF @pay iG)) = T(F @Lam G).

Now we need to show T is a commutative strong monad.

Idr®Lamn
—-—

F ®XLam G F @Lam fG
ln /
t
T(F ®Lam G)

The above diagram commutes because the following diagram commutes (by properties of 7 and

Theorem [G.1[(1)+(2)).

(1d
lF®DaylG HgEniny i @pay iTG) Ry g lF®Day TiG)

&
L(iF ®pay IG T(iF ®Day iG)

F®LanTTG —— T(F ®LanTG) — TT(F @Lam G)

lF®Lam“T l”f

F ®1.am fG f(F XLam G)

~
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The above diagram commutes because the following diagram commutes (all the inner diagrams
commute, by naturality, properties of 7, and Theorem|[G.1(3)+(4)).

L(iF ®piTTG) (L@D@L(m @pTiTG) —H s [T(iF ©piTG)

L(1d@pinT) LId®pTH) o
L(iF ®piTG) L(iF ®p TTiG) TL(iF ©piTG)
L(ld® _ I iT TLd®
( ﬁ/md&)“T) Li LT(Id®Dﬁ)~ (d@pp)
L(iF ®p TiG) LT(iF ®pTiG) —2— TL(iF ®p TiG)
Ir LTt TLF
LT(iF ®piG) «—— LTT(iF ®piG) —— TLT(iF ®piG)
Ly
P Tp
TL(iF ®piG) - TTL(iF ®piG)
u
(F &Lam G) ®Lam TH d T((F &Lam G) &Lam H)

J I

~ d a 7 ~ g ~
F@Lam (G®Lam TH) IﬁtF@Lam T(G®LamH) *l> T(F ®Lam (G®L4mH))

Again, the above diagram commutes because the following diagram commutes (all of the inner
diagrams commute by naturality, properties of 7, and Theorem [G.17)).

LL(iF ®piG) @pi TH) HEoR) 7 (GL(iF @p iG) @p TiH) s [T(L(F ©piG) @piH)

l(L(n Lgpld))~ l(L (nT@pld))~! lp
L(F ©piG) @piTH) "ML [(iF 0piG) opTiH) —E— IT((iF ©piG)®piH) TL(L(F ©piG) ®piH)
lLa lLa \ l?(i(ni@,,m»*'
LGF @ (iGopiTH) 2P} iF o) (iG 0p TiH) TL((iF ®piG) @piH)
ll(ld@pn‘i‘) L(dopn'™) lzad@na lﬁa
L(iF @pT(iG®piH)) TL(iF ®p (iG®piH))

lij / lT(Z‘(Idé}pﬂJ‘))

L(iF ®@pil(iGopTiH)) LT (iF ®p (iG®piH)) TL(iF ®pil(iG®piH))
Lldepn™ ) pT

L ld@,,iiﬂl
L(ld@pip) L(ldopB)

L(iF ®pilT(iG®piH)) —— L(iF @piTL(iG@piH)) ——5 L(iF ©p TiL(iG ®piH)) _r, LT (iF ®piL(iG®piH))

L(iF @piL(iG®piTH))
L(ld®pil(1d2pp ))l

I ®1am TF *) T I®Lam

\ lm

The above diagram commutes because the following commutes (all the inner diagrams commute,
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by naturality, property of 7, and Theorem [G.1](5)).

LuepiTF) M 10, Tir) By IT(10piF)

lm ~ lm y lp

Lir — 2 L ITiF TL( ®piF)

ls \ ﬁm

TF _ TLiF

Te

* Lastly, since Cis symmetric monoidal with YrG ! : F ®Lam G — G ®Lam F. We define the costrength
OFG = TyG FolG oYy FG: :TF @Lam G — T(F ®ram G). We need to show the following diagram
commutes.

TF @Lam TG
. / \
) T(TF @Lam G)
|7
) . TT(F ®Lam G)
XL /
T(F ®Lam G)

Again, the above diagram commutes because the following diagram commutes (all the inner dia-
grams commute, by naturality, properties of 7, and Theorem [G.I[4)+(6)).

LTG@piTF) <2 L(iTF @pilG)

L ﬁ% w) B
Lildz=pp) L .
L(TiF @piTG) L(TF @pTiG)
L{ldepp) L(B=pld) L
L(TGwpTiF) L(TiF ©pTiG) LT(iTF ©piG)
i L{Bapld i »
/ \ % \ ‘/T/f 10) \
LT(iTG®piF) L(TiGpTiF) LT(TiF @piG) TL(TF ©piG)
LT(Bepld) P TLA
TL(TG®piF) LT(TiG @piF) LT(iGpTiF) TL(TiF ©piG) TL(iG@piTF)
P TLA
/ ‘/7, T A o)
TL(iF @piTG) LT(iF @pTiG) LTT(iG ®piF) TL(iG@pTiF)
TL(Wd=pp) T P
\, / Ty \ %
TL(iF ©pTiG) LTT(iF ©piG) TLT(iG®piF)
P )
TLT(iF @piG) n TTL(iG®piF)
7o
/rt-v
LT(iF ©piG) TTL(iF ©piG)
X« /
W
TL(iF ©piG) D

H Proof of Theorem 4.17

Theorem H.1. The ¥ -category C is a model for Proto-Quipper with dynamic lifting.

Proof. We have already shown that C satisfies conditions EI—H and @-@ In the following we will focus
on condition fl
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* First we need to define a functor y : M — V(é) We define it as the following composition.

MgV(C)<V—y>

v(C)
The functor y is strong monoidal, because VY is strong monoidal.

Next we need to define a functor ¢ : Q — K lV;(V(e)). We write
Orc : C(F,TG) = [Set® | ,roa (U0 F, Uy G)
for any F,G € C. We also write Q : [SetC" ] roa = [SetQ” | proa. We have
Kl,(V(C))(F,G) = ¥(1,C(F,TG))

Y (1,6rG) QUT)’F.UT)’G

= Y (1,8t |roa (M0 F. U0 G) = [SetQ]roa(FO, G°)
for any F,G € C. The category Kl 7 (V(C)) is enriched in convex spaces because Set™] 1oa is

enriched in convex spaces.

Now we define ¢. On objects, we define

9(8) =5 = C(-,9).
On morphisms, for any S,U € Q, we define @5 iy by the following composition of isomorphisms.

KSU

Q(8,U) = [Set?"|poa(kS, kU) = [Set?" |proa((3S)°, (GU)°)

— 1 _
QUT)’ 5,y 5U (1,65 )

= Y (1,[Set Jproa W0 ¥, To'FU)) = Klyz(V(C))(3S,3V)

Since the Lambek embedding &5y preserves convex sum (Theorem [4.16) and the composition
V(1,6 Sl U)© oQ ! preserves convex sum, we conclude that ¢ preserves convex sum.
yS.y To'yS, 0o yU

Next we need to show ¢ is strong monoidal. Since k is strong monoidal, we have the natural
! msy

isomorphisms / = 7 and kS @ kU = x(S®U) for any S,U € Q. Recall that for any S € Q,

kS = Q(—,S) = Uy C(—,S) and Uy is strong monoidal. Via the isomorphism  (which preserves

the monoidal structure) we have the following natural isomorphisms in [Setcnp]prod.

Q () : Uy C(—,1) = Ty C(—,1)
QN (mly) : T (C(—,8) ®C(~,U)) = Uy C(—,S@U).
Now let ms i = 655, (Q7 () : C(—, ) @ C(—,U) — TC(—,S®U)and e = 6, 5(Q71(e)):

C(—,I) = TC(—,I). It is obvious that e is an isomorphism in Klvf(V((E)). The inverse of ms

is defined as GyglyU(Q*I( ’SU_l )), which can be verified. We can furthermore show that mg ¢ is
natural and that e, mg y; satisfies the strength dlagrams forany S,U € Q. For example, showing ms /
is natural in K7, 7(V (C)), via the adjunction Uy A', is equivalent to the naturality of Q- (mSTU)
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* Lastly, we want to show that the following diagram commutes.

M(S,U) —2%— ¥ (1,E(38,3U)) = V(C)(3S,3U)

JJS,U \LES‘U

Q(S,U) +—— ¥(1,C(3S,TyU)) = Kl #(V(C)(5S,3U)

S,U

Let f € M(S,U). We write (f,Jsy f) for the corresponding map in #'(1,C(S,U)). It corresponds
to the following map in C via the enriched Yoneda embedding.

C(_7S)y(f7JS,Uf)

C(_7 U)
Applying Ny to the above map, we have the following.

Y(fajs,Uf)
—_—

C(-,S) Cc(-,U) s TC(-,U)

So for any A € C, we have the following.

M(A,8) M Ma,v) 22 QL)

Jons [ |

Q.9 * 1 Qu.u) — Q.v)
Since q)S’Ll, = Ksy oQUO/yS v © 7 (1, 65s50), we have

050 (Mu o3 (fIsuf)) = Ko Qs prsw” (1 8s50) (Mu 0 3(f Isu )

= K, 1QUO/ys U )U<UOIY(f7JS,Uf)) = K5 (Q(—,Jsu f) = Jsuf € Q(S,U).
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