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Abstract

Path sums are a convenient symbolic formalism for quantum operations with applications to the
simulation, optimization, and verification of quantum protocols. Unlike quantum circuits, path sums
are not limited to unitary operations, but can express arbitrary linear ones. Two problems, therefore,
naturally arise in the study of path sums: the unitarity problem and the extraction problem. The former
is the problem of deciding whether a given path sum represents a unitary operator. The latter is the
problem of constructing a quantum circuit, given a path sum promised to represent a unitary operator.

In this paper, we show that the unitarity problem is co-NP-hard in general, but that it is in P when
restricted to Clifford path sums. We then provide an algorithm to synthesize a Clifford circuit from a
unitary Clifford path sum. The circuits produced by our extraction algorithm are of the form C1HC2,
where C1 and C2 are Hadamard-free circuits and H is a layer of Hadamard gates. We also provide
a heuristic generalization of our extraction algorithm to arbitrary path sums. While this algorithm is
not guaranteed to succeed, it often succeeds and typically produces natural looking circuits. Alongside
applications to the optimization and decompilation of quantum circuits, we demonstrate the capability
of our algorithm by synthesizing the standard quantum Fourier transform directly from a path sum.

1 Introduction

The circuit model is ubiquitous in quantum computing, from hardware assembly code to the high-level
description of algorithms. Quantum compilation typically amounts to a series of circuit-to-circuit transfor-
mations, lowering a circuit, described programmatically in a circuit description language over a high-level
gate set, down through a series of progressively restrictive gate sets with more fault-tolerance and hardware
constraints. Accordingly, quantum algorithms are frequently described at the level of quantum circuits,
plugging together inputs and outputs of large, complicated circuits. An exception is the classical oracles
used in many quantum algorithms, which are often described at the level of classical programs or Boolean
logic, and then synthesized as a high-level quantum circuit.

Despite this, the circuit model is often a less than ideal representation of quantum computations. Seman-
tically, circuits expose little information about a computation to the naked eye, particularly when low-level
gate sets like Clifford+T are used. Likewise, reasoning about quantum circuits is often a difficult affair
involving re-write rules derived from circuit relations. Complete sets of relations are only known for a small
number of low-level non-universal gate sets [28, 3, 22], or higher-level gate sets [10, 21] which result in a large
degree of overhead when compiled. Even with complete sets of relations, simplification of quantum circuits
using re-write rules is costly and highly local, yielding results which are typically far from optimal.

Recently, alternative models of quantum computation such as those based on diagrammatic calculi [12, 7],
have risen in popularity. These models have seen success in circuit simplification, among other applications,
due in part to more effective re-writing methods. However, as most existing quantum computers ultimately
run on circuit-like languages, a key component in using such models for circuit transformations is the ability
to synthesize or extract a circuit back from the representation. This problem has seen a great deal of attention
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recently in the context of graphical calculi, resulting in methods for the extraction of Clifford and Clifford+T
circuits from ZX diagrams admitting a generalized flow [17, 8], as well as theoretical results studying the
hardness of this extraction problem [15].

In this paper, we study the problem of synthesizing a unitary circuit given a symbolic expression of a linear
operator as a sum-over-paths or path sum [2]. As any linear operator between 2n-dimensional Hilbert spaces
is representable in this form, we first consider the problem of deciding whether a path sum representations
a unitary transformation and show that it is generically coNP-hard. Restricting to path sums representing
Clifford operators we show that the unitarity problem is in P, and that a unitary circuit can be synthesized
in time polynomial in the number of qubits. This extraction algorithm produces circuits of the form C1HC2,
where C1 and C2 are Hadamard-free circuits decomposable as a product of s, x, cz, and cnot gates, and H
is a layer of Hadamard gates. As a consequence we obtain a simple, constructive proof of the 7-stage Bruhat
decomposition of the Clifford group [11, 23].

For non-Clifford operations, we give a heuristic for the unitary synthesis of general sums. While our
heuristic does not always produce a circuit even if the path sum represents a unitary operator, it succeeds
often in practice and typically returns efficient, natural circuits. Alongside circuit optimization, this heuristic
has applications to the decompilation of quantum circuits, whereby a circuit over a low-level gate set such
as Clifford+T is re-written over a higher-level gate set such as multiply-controlled Toffoli gates. We further
demonstrate the capability of our algorithm by synthesizing the typical quantum Fourier transform circuit
directly from its specification as a sum-over-paths.

2 Path sums

We begin by briefly reviewing the theory of path sums [2, 31]. A path sum representation of a linear operator
Ψ : C2m → C2n is an expression for Ψ as a sum indexed by binary variables such as

Ψ |~x〉 = N
∑
~y∈Zk

2

e2πiP (~x,~y) |f(~x, ~y)〉 , (1)

where N ∈ C \ {0} is a normalization factor, and P : Zm2 × Zk2 → R and f : Zm2 × Zk2 → Zn2 are real- and
Boolean-valued multilinear polynomials, respectively. The path sum in Equation (1) is said to be amplitude-
balanced because the normalization factor N is independent of ~x and ~y. We sometimes denote the path sum
representation of an operator Ψ by |Ψ〉.

Equation (1) provides a representation the operator Ψ in the sense that instantiating the binary variables
~x and ~y on both sides of the equality yields a true equation. For this reason, we think of a path sum as a
symbolic description of the action of a linear operator on computational basis states.

Example 2.1. The phase gates s and t, as well as the Hadamard gate h, can be represented by path sums
as follows, where ω = eiπ/4:

• s |x〉 = ix |x〉,

• t |x〉 = ωx |x〉, and

• h |x〉 = 1√
2

∑
y(−1)xy |y〉.

As path sums involve arithmetic and polynomials over Boolean variables in various rings, it is useful to
recall that Boolean algebra can be embedded in any (unital) ring R using the lifting construction defined in
[2, Lemma 7.1.6] and reproduced below.

0 = 0R f ∧ g = f · g
1 = 1R f ⊕ g = f + g − (2 · f · g)

Lifting allows one to use Boolean expressions of variables inside path sums coherently, leading to more
natural expressions, as in the following example.
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Example 2.2. The gates cnot and tof admit the following path sum representations:

• cnot |x1x2〉 = |x1〉 |x1 ⊕ x2〉 and

• tof |x1x2x3〉 = |x1〉 |x2〉 |x1 ⊕ (x2 · x3)〉.

The sum-over-paths representations of linear operators has been studied extensively in the context of
quantum information [13, 9, 27, 24, 19, 14]. Recent work on the connection to graphical calculi [20, 31]
has shown that path sums form a universal model for linear operators over 2n-dimensional Hilbert spaces
through direct translations from universal graphical calculi such as the ZH-calculus [7].

Proposition 2.3 (Unversality). Any linear operator Ψ : C2m → C2n admits a representation as a path sum.

Example 2.4. Path sums can represent linear operators between spaces of different dimensions. The
operators η : C → C2 ⊗ C2 and ε : C2 ⊗ C2 → C, which act, respectively, as the unit and counit in the
category FdHilb [31], can be written as the following path sums:

• η |〉 =
∑
y |yy〉 and

• ε |x1x2〉 = 1
2

∑
y(−1)y(x1+x2) |〉.

When a path sum represents a row or column vector as above, we drop any empty |〉. A path sum with a
single output dimension, representing a C-valued linear map, is said to be dimensionless.

In contrast to graphical calculi, which have a compositional structure, path sums are effectively global
expressions of a linear operator. In other words, the composition (sequential or parallel) of two linear opera-
tors is reified into an expression of the form of Equation (1). This is accomplished through the substitution
of free variables — variables that are not summed over, corresponding to inputs of the operator as elements
of the computational basis. We denote the free variables of a path sum |Ψ〉 by FV (|Ψ〉). A path sum with
free variables may be thought of as a symbolic state vector in indeterminates ~x = FV (|Ψ〉). Hence we use
the notation |Ψ(~x)〉 to denote a path sum expression for the operator Ψ with free variables ~x. We use |Ψ(x)〉
to denote a path sum with a distinguished free variable x.

Through the lifting operation described above, we can define a notion of substitution for path sums with
free variables. In particular, given a free variable x appearing in a path sum we may substitute x with any
Boolean expression f in all relevant contexts (the phase or the state).

Definition 2.5 (Substitution). Let |Ψ(x)〉 be a path sum with free variable x and let f be a Boolean
expression. Then the substitution of x with f is denoted |Ψ(f)〉.

Reasoning with local binders and free variables in the path sums requires care to avoid variable capture.
For instance, let |Ψ(x)〉 =

∑
y |x〉. It can be observed that |Ψ(x)〉 represents the linear operator Ψ = 2I.

However, if x is substituted with the free variable y, the
∑
y captures y, giving the path sum |Ψ(y)〉 =

∑
y |y〉,

representing the vector |0〉+ |1〉. We assume that substitution is capture-avoiding unless otherwise noted.
A variable may also be bound by summing over its possible values. A bound variable may be locally

viewed as a free variable by pulling the summation outside of an expression. Indeed, if |Ψ(x)〉 is a path sum
with free variable x, then

∑
x |Ψ(x)〉 is a path sum with free variables FV (|Ψ〉) \ {x}. We sometimes refer

to bound variables as path variables.

Example 2.6. Recall that the Hadamard gate can be represented as h |x〉 = 1√
2

∑
y(−1)xy |y〉. Alternatively,

the Hadamard gate can also be written as h |x〉 =
∑
y |Ψ(x, y)〉 where |Ψ(x, y)〉 = 1√

2
(−1)xy |y〉 is a path

sum in the free variables x and y.

By Proposition 2.3, any linear operator admits a path sum representation. In particular, the composition
or tensor product of any two linear operators can also be represented as a path sum. The following proposition
gives explicit expression for these constructions in the language of path sums.
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Proposition 2.7 (Parallel & Sequential composition). Let Ψ : C2m → C2n and Φ : C2s → C2t be two
linear operators and let Ψ |~x〉 = N

∑
~y∈Zk

2
e2πiP (~x,~y) |f(~x, ~y)〉 and Φ |~w〉 = M

∑
~z∈Zl

2
e2πiQ(~w,~z) |g(~w, ~z)〉 be

expressions of Ψ and Φ as path sums. Then

Ψ⊗ Φ |~x〉 |~w〉 = NM
∑
~y∈Zk

2

∑
~z∈Zl

2

e2πi[P (~x,~y)+Q(~w,~z)] |f(~x, ~y)〉 ⊗ |g(~w, ~z)〉

Φ ◦Ψ |~x〉 = N
∑
~y∈Zk

2

e2πiP (~x,~y) |Φ(f(~x, ~y))〉

as path sums, where the latter is well-formed if and only if s = n.

The parallel and sequential composition of path sums provides a method to compute a symbolic expression
for a circuit over a set of basic gates with known path sums. Moreover, for typical gate sets of interest, this
representation has size polynomial in the size of the circuit. We give one such result below [2, Corollary
2.15] for the class of circuits which will be most relevant for the purposes of this paper.

Proposition 2.8 (Efficiency for Clifford+T ). Any circuit over Clifford+T gates of volume V can be expressed
as a path sum which has size polynomial in V and can be computed in time polynomial in V .

Equational reasoning A major utility of the path sum representation [2] comes from the ability to perform
equational reasoning. Complete equational theories of Clifford unitaries [2] and more general stabilizer
operations [31] have previously been developed. We reformulate these theories here using locally free variables
to simplify their presentation.

Proposition 2.9. Let Ψ be a path sum such that y /∈ FV (Ψ) and let f be a Boolean expression such that
x, y /∈ FV (f). Then the following equations hold.∑

y

|Ψ〉 = 2 |Ψ〉 (2)

∑
x,y

(−1)y(x+f) |Ψ(x)〉 = 2 |Ψ(f)〉 (3)

∑
y

iy(−1)yf |Ψ〉 = ω
√

2(−i)f |Ψ〉 (4)

∑
y

|Ψ(y)〉 =
∑
y

|Ψ(y + f)〉 (5)

Equations (2), (3) and (4) are restatements of [2, Proposition 3.1]. Equation (5) is a generalization of
the (ket) rule given in [31, Figure 3] and can be derived from Equation (3) as follows:∑

y

|Ψ(y)〉 =
∑
y

[
1

2

∑
x,z

(−1)z(x+(y+f)) |Ψ(y)〉

]
By Equation (3) where x, z /∈ FV (f) ∪ FV (Ψ)

=
∑
x

[
1

2

∑
y,z

(−1)z(y+(x+f)) |Ψ(y)〉

]
Basic arithmetic

=
∑
x

|Ψ(x+ f)〉 By Equation (3)

=
∑
y

|Ψ(y + f)〉 Since y /∈ FV (f) ∪ FV (Ψ)

The first equality above uses the instance
∑
x,z(−1)z(x+f

′) |Ψ(y)〉 = 2 |Ψ(y)〉 of Equation (3), where f ′ = y+f
and |Ψ(y)〉 is viewed as a path sum with zero occurrences of the free variable x.

Example 2.10. Consider the dimensionless path sum 1√
2

∑
y i
y. By Equation (4) it follows that 1√

2

∑
y i
y =

ω. Hence, Equation (4) symbolically encodes the fact that ω = 1+i√
2

.
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Relationship to post-selected circuits As with the ZX-calculus and variants, path sum expressions
correspond naturally to circuits with ancillas and postselection. Given a path sum expression of a linear
operator Ψ : C2m → C2n of the form of Equation (1), a circuit implementing Ψ up to a constant scalar factor
can be achieved through postselection as follows. First, prepare k ancillary qubits in the state 1√

2
k

∑
~y∈Zk

2
|~y〉

by applying Hadamard gates to the |0〉⊗k state. The symbolic state is then prepared up to some garbage
|g(~x, ~y)〉 via the unitary transformation

ΨPS : |~x〉 ⊗ |~y〉 7→ e2πiP (~x,~y) |f(~x, ~y)〉 ⊗ |g(~x, ~y)〉 .

Finally, the garbage is discarded by postselecting h⊗m+k−n |g(~x, ~y)〉 = N ′
∑
~z(−1)~z·g(~x,~y) |~z〉 on ~z = ~0.

Since postselected quantum circuits are believed to be strictly more powerful than non-postselected
circuits [1], the rest of this paper focuses on the question of synthesizing unitary circuits for path sums
representing unitary transformations, up to normalization.

3 Unitarity testing

We are interested in the synthesis of unitary quantum circuits implementing a path sum. As a path sum
may represent an arbitrary linear operator, a natural question to ask is whether a given path sum represents
a unitary transformation, and hence can be extracted to a unitary circuit. We call this the unitarity testing
problem for path sums and formulate it as a decision problem below.

Definition 3.1 (UNITARY). UNITARY is the set of path-sums |Ψ〉 where Ψ is a unitary transformation.

The unitarity problem is clearly decidable since we can always explicitly compute a matrix representation
of Ψ from a path sum |Ψ〉. However, since the size of the corresponding matrix is exponential in n, this
solution is not efficient. As we show in this section, one should not hope for an efficient solution in general.

Recall that the complexity class co-NP consists of the decision problems whose complement belongs
to NP, and hence is widely believed to be intractable. A canonical complete problem for co-NP is the
tautology problem, recognizing the set of propositional formulas over the connectives {¬,∧,∨} which are
satisfied by every variable assignment. We view a propositional formula in n distinct free variables as a
function Zn2 → Z2, using the standard interpretation ¬x := 1 + x, x ∧ y := xy and x ∨ y := x+ y − xy. The
application of ϕ to some ~x ∈ Zn2 is denoted by ϕ(~x).

Definition 3.2 (Tautology). A propositional formula ϕ in n variables is a tautology if ϕ(~x) = 1 for every
~x ∈ Zn2 , written ϕ ≡ 1.

Definition 3.3 (TAUT). TAUT is the set of all propositional formulas that are tautologies.

Theorem 3.4 (Karp’s 21 NP-complete problems). The TAUT problem is co-NP-complete.

To reduce TAUT to UNITARY, our goal is to encode a propositional formula ϕ as a path sum representing
the linear operator Φ |~x〉 = ϕ(~x) |~x〉 which is the identity if ϕ ≡ 1, and non-unitary otherwise. To do so we
establish an encoding of ϕ as a dimensionless path sum of the form ϕ(~x) = N

∑
~y(−1)P (~x,~y), where P is a

multilinear Boolean polynomial.
It can readily be observed that x = 2−1

∑
y∈Z2

(−1)y(1+x) for any x ∈ Z2. This gives an immediate
encoding of any propositional formula in a path sum by extending the lifting discussed in Section 2 to
propositional negation and disjunction via the equations ¬ϕ = 1−ϕ, ϕ ∨ ψ = ϕ+ψ−ϕ ·ψ, and then setting

ϕ(~x) = 2−1
∑
y

(−1)y(1+ϕ(~x)).

However, the lifting of a propositional formula ϕ may generally have size exponential in the size of ϕ. To
obtain a polynomial size encoding we rely on the Tseytin transformation [29].

Given two propositional formulas ϕ and ψ, we write ϕ↔ ψ for the logical equality of ϕ and ψ, which is
satisfied by an assignment ~x if and only if ϕ(~x) = ψ(~x). The Tseytin transformation takes a propositional
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formula ϕ with k distinct subterms and returns an equisatisfiable conjunction of at most O(k) constant-
depth formulas by assigning a fresh propositional variable to the value of each subterm. For instance, given
a propositional formula ϕ = x1 ∧ (x2 ∨ ¬x3), the Tseytin transformation of ϕ, denoted T (ϕ), is

T (ϕ) = z1 ∧ (z1 ↔ x1 ∧ z2) ∧ (z2 ↔ x2 ∨ z3) ∧ (z3 ↔ ¬x3).

Note that FV (ϕ) ⊆ FV (T (ϕ)) and that the satisfying assignments of ϕ and T (ϕ) are in a 1-to-1 correspon-
dence and agree on FV (ϕ).

Given a propositional formula ϕ, we can encode the Tseytin transformation T (ϕ) of ϕ in a dimensionless
sum over the free variables of ϕ using the following encoding of logical equality

(ϕ↔ ψ)(~x) =
∑
y

(−1)yϕ(~x)+yψ(~x).

Note that for a clause of the Tseytin transformation z ↔ ϕ where ϕ has constant depth, ϕ has constant size.
If we denote the clauses of T (ϕ) by z1 ↔ c1, . . . , zk ↔ ck, we may encode T (ϕ) as a polynomial-size sum by
taking the product of each clause and distributing over the summations:

T (ϕ)(~x, ~z) = z1
∏
i

(zi ↔ ci)(~x) = 2−1
∑
y

(−1)y(1+z1)
∏
i

2−1
∑
yi

(−1)yi(zi+ci(~x))

= 2−(k+1)
∑
y

∑
~y∈Zk

2

(−1)y(1+z1)+
∑

i yi(zi+ci(~x)).

Finally, since the satisfying assignments of ϕ and T (ϕ) are in a 1-to-1 correspondence, we see that

ϕ(~x) =
∑
~z

T (ϕ)(~x, ~z) = 2−(k+1)
∑
y

∑
~y∈Zk

2

∑
~z∈Zk

2

(−1)y(1+z1)+
∑

i yi(zi+ci(~x)).

Proposition 3.5. Let ϕ be a propositional formula in n variables and let T (ϕ) = z1 ∧ (
∧k
i=1 zi ↔ ci). Then

for any ~x ∈ Zn2 ,

ϕ(~x) = 2−(k+1)
∑
y

∑
~y∈Zk

2

∑
~z∈Zk

2

(−1)y(1+z1)+
∑

i yi(zi+ci(~x))

where the sum on the right hand size has size polynomial in k.

Remark 3.6. The encoding of ϕ in Proposition 3.5 is interesting because it gives a polynomial-size expression
in the same variables as ϕ. This is in contrast to the propositional Tseytin transformation which gives an
encoding over a superset of free variables, and hence only remains equi-satisfiable. In particular, T (·) does
not preserve tautologies, whilst our encoding does when viewed as a {0, 1}-valued function.

Given the encoding of ϕ above, we can now prove co-NP-hardness of the unitarity testing problem by
a reduction from TAUT.

Theorem 3.7. The unitarity testing problem is co-NP-hard

Proof. By many-one reduction from TAUT to UNITARY. Given a propositional formula ϕ in n variables,
define Ψ : Zn2 → Zn2 to be the linear operator given by Ψ |~x〉 = ϕ(~x) |~x〉 . By Proposition 3.5, Ψ admits the
following representation as a path sum

Ψ |~x〉 = 2−(k+1)
∑
y

∑
~y∈Zk

2

∑
~z∈Zk

2

(−1)y(1+z1)+
∑

i yi(zi+ci(~x)) |~x〉

which has size polynomial in the number of subterms of ϕ. Hence all that remains is to show that Ψ is
unitary if and only if ϕ is a tautology. If suffices to observe that, for any ~x ∈ Zn2 , Ψ |~x〉 = ϕ(~x) |~x〉 = |~x〉 if
ϕ(~x) = 1 and ~x ∈ Zn2 , Ψ |~x〉 = ϕ(~x) |~x〉 = 0 otherwise. In particular, if ϕ(~x) = 1 for all ~x ∈ Z2, then Ψ = In.
Otherwise, there exists ~x ∈ Z2 such that Ψ |~x〉 = 0 and hence Ψ is non-unitary, as required.
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4 Clifford synthesis

In this section we look at the problems of synthesis and unitarity testing in the restricted case of Clifford
operations. The synthesis of Clifford circuits has applications both to randomized benchmarking, as well as
to the design and analysis of error correction circuits. We first review the definition of the Clifford group.

Definition 4.1 (Pauli group). The n-qubit Pauli group Pn is the group of n-fold tensor products of Pauli
operators {I,X, Y, Z}.

Definition 4.2 (Clifford group). The n-qubit Clifford group is the group Cn = {U ∈ U2n | UPnU† = Pn}.

A well-known consequences of the Gottesman-Knill theorem is the fact that, up to global phases, the Clif-
ford group is generated by {h, s,cnot}. We may use this fact to give a convenient path sum representation
of Clifford operations.

Proposition 4.3. Every Clifford operator Ψ : C2n → C2n can be written as a sum of the form

Ψ |~x〉 =
ωl√
2k

∑
~y∈Zk

2

iL(~x,~y)(−1)Q(~x,~y) |f(~x, ~y)〉 (6)

where ω = e2πi/8, l ∈ Z8, L : Zn2 ×Zk2 → Z4 is linear, Q : Zn2 ×Zk2 → Z2 is pure quadratic, and f : Zn2 ×Zk2 →
Z2 is affine.

Proof. As the Clifford group generators cnot, s, and h can be written in the form of Equation (6), it only
remains to show that the composition of two such sums can be written in the form of Equation (6). It suffices
to note that substitution of a variable with an affine Boolean expression does not increase the degree of Q
or f , while substitution in L produces a quadratic form with degree 2 terms divisible by 2.

We call an expression of the form of Equation (6) a Clifford path sum. In the context of stabilizer states
— states |ψ〉 = C |~0〉 for some C ∈ Cn — this representation is well-known by various names, including the
quadratic form expansion [14] and the affine representation [16, 26]. Through the inclusion of free parameters
we can represent stabilizer states, Clifford unitaries, or Clifford circuits with ancillas in this form.

We next define a normal form for Clifford path sums which will be useful for circuit synthesis.

Definition 4.4 (Normal form). A Clifford path sum for Ψ is in normal form if, up to a reordering of qubits,

Ψ |~x〉 =
ωl√
2k

∑
~y∈Zk

2

iL(~x,~y)(−1)Q(~x,~y) |~y〉 ⊗ |f(~x, ~y)〉 , (7)

where l ∈ Z8, L : Zn2 × Zk2 → Z4 is linear, Q : Zn2 × Zk2 → Z2 is pure quadratic, and f : Zn2 × Zk2 → Z2 is
affine.

The normal form above corresponds to re-writing the sum over a minimal set of vectors spanning the
affine subspace of Zn2 given by {f(~x, ~y) | ~y ∈ Zk2}. The following proposition states that Equations (2), (3),
(4) and (5) suffice to re-write a unitary Clifford path sum into normal form.

Proposition 4.5. Let |Ψ〉 be a Clifford path sum. There exists a re-writing procedure which will terminate
with |Ψ〉 in normal form if Ψ is unitary and runs in time polynomial in the size of |Ψ〉.

Proof. For each path variable yi, if there exists j such that fj(~x, ~y) = yi ⊕ f ′(~x, ~y), Equation (5) can be
applied to substitute yi with yi ⊕ f ′(~x, ~y). If no such j exists, either Ψ is unitary and one of Equations (2),
(3) and (4) necessarily applies to eliminate yi [2], or no rule applies and Ψ is non-unitary.

Remark 4.6. Proposition 4.5 also holds for non-square Ψ : C2m → C2n with m ≤ n so long as Ψ is an
isometry — that is, if Ψ corresponds to a Clifford circuit with some ancillas or fixed inputs.
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Corollary 4.7. The unitarity testing problem for Clifford path sums is in P.

Proof. Given a Clifford path sum |Ψ〉, we can construct a path sum representation of Ψ† efficiently using η,
ε, and negating L. Then by Proposition 4.5 we can normalize the path sum representations of ΨΨ† and Ψ†Ψ
each in polynomial time. If either fails to produce a normal form, then one of ΨΨ† or Ψ†Ψ is non-unitary
and hence Ψ is non-unitary. If both are reduced to normal form, it suffices to observe that we can check
whether a Clifford path sum in normal form represents the identity transformation in polynomial time.

It is now straightforward to compute a circuit implementing a (unitary) Clifford path sum from its

normalized form. If we decompose f , L, and Q as f(~x, ~y) = fx(~x) + fy(~y) +~b, L(~x, ~y) = Lx(~x) +Ly(~y), and

Q(~x, ~y) = Qx(~x) +Qy(~y) +
∑k
i=1 yiRi(~x) then the normal form can be written as the following sequence of

transformations:

|~x〉 7→ ωliLx(~x)(−1)Qx(~x) |~x〉
|~x〉 7→ |R(~x)〉 |fx(~x)〉

|R(~x)〉 |fx(~x)〉 7→ 1√
2k

∑
~y∈Zk

2

(−1)
∑

i yiRi(~x) |~y〉 |fx(~x)〉

|~y〉 |fx(~x)〉 7→ |~y〉 |fx(~x) + fy(~y) +~b〉
|~y〉 |f(~x, ~y)〉 7→ iLy(~y)(−1)Qy(~y) |~y〉 |f(~x, ~y)〉

This gives a circuit of the form U(h⊗k ⊗ in−k)V where U and V are generalized permutations contained
in the Clifford group. Moreover, |~x〉 7→ |R(~x)〉 |fx(~x)〉 is the only operator which may be non-unitary, and
in particular is unitary if and only if Ψ is. Note that the unitarity of Ψ hence forces {Ri} to be linearly
independent and for Ri to be non-zero. This is summarized in Algorithm 1.

Algorithm 1 Clifford synthesis algorithm

1. Normalize |Ψ〉 in the form ωl
√
2k

∑
~y∈Zk

2
iL(~x,~y)(−1)Q(~x,~y) |~y〉 ⊗ |f(~x, ~y)〉 up to qubit reordering.

2. Decompose f , L, and Q as f(~x, ~y) = fx(~x) + fy(~y) + ~b, L(~x, ~y) = Lx(~x) + Ly(~y) and Q(~x, ~y) =
Qx(~x) +Qy(~y) +

∑
i yiRi(~x) where each Ri is linear.

3. Synthesize circuits for the following linear transformations:

• D |~x〉 = iLx(~x)(−1)Qx(~x) |~x〉
• U |~x〉 = |R(~x)〉 |fx(~x)〉

• V |~y〉 |fx(~x)〉 = |~y〉 |fx(~x) + fy(~y) +~b〉
• P |~y〉 |f(~x, ~y)〉 = iLy(~y)(−1)Qy(~y) |~y〉 |f(~x, ~y)〉

4. Return ωlPV (h⊗k ⊗ in−k)UD with qubits appropriately reordered.

Theorem 4.8. Let Ψ : C2n → C2n be expressed as a Clifford path sum. If Ψ is unitary, then Algorithm 1
produces a circuit over {ω,cnot,x,cz, s,h} implementing Ψ in time polynomial in the size of the expression.
Moreover, this circuit can be written up to global phase as an 8-stage circuit of the form

s · cz · cnot · h · cnot · x · cz · s

Proof. That Ψ = ωlPV (h⊗k ⊗ in−k)UD follows by an easy calculation.
By Proposition 4.5, Ψ can be written up to a permutation of qubits in normal form in polynomial time.

Since Lx and Ly are linear, and Qx and Qy are pure quadratic, D and P can each be synthesized using a
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single stage each of s and cz gates — one sm gate for each non-zero term of L{x,y} and one cz gate for
each non-zero term of Q{x,y}. Likewise, since fy(~y) is linear, V can be synthesized in time polynomial in n

using a single stage each of cnot and x gates — one gate for each non-zero entry of fy(~y) and ~b. Finally,
U |~x〉 = |R(~x)〉 ⊗ |fx(~x)〉 can be synthesized over {cnot} in polynomial time using Gaussian elimination if
and only if U is invertible. Moreover, since

U = ω−l(h⊗k ⊗ in−k)V †P †ΨD†,

it follows that U is invertible if and only if Ψ is unitary.

We give a diagrammatic presentation of Theorem 4.8 showing the circuit schematically below.

x1 SLx(x1)

(−1)Qx(~x) U

H •
(−1)Qy(~y)

SLy(y1) y1
...

. . .
...

xk SLx(xk) H • SLy(yk) yk

xk+1 SLx(xk+1)

Xfy(y1) Xfy(yk)

Xb1 f1(~x, ~y)
...

...
xn SLx(xn) Xbn−k fn−k(~x, ~y)

Discussion In [23] a 7 stage decomposition of the Clifford group of the form s ·cz ·c ·h ·c ·cz ·s was given,
where c is circuit implementing an affine permutation. As affine permutations require both cnot and x gates
to implement without ancillas — and moreover x can not be written in the form s ·cz ·cnot ·h ·cnot ·cz · s
— our projective decomposition reduces the equivalent 9-stage projective decomposition of [23] to 8 stages.

It can also be observed that with a minor modification, Algorithm 1 suffices to synthesize Clifford circuits
with ancillas, including circuits for preparing stabilizer states. In particular, if Ψ : C2m → C2n is an isometric
Clifford path sum with m ≤ n, the only modification needed is in the synthesis of U |~x〉 = |R(~x)〉⊗|fx(~x)〉. If
indeed m ≤ n, then a Clifford circuit with ancillas exists and can be synthesized if and only if {Ri}∪{(fx)i}
contains m linearly independent (row) vectors. This produces a 5-stage circuit of the form h ·cnot ·x ·cz · s
for the preparation of an arbitrary stabilizer state up to global phase. This stabilizer state decomposition
was previously given in [26].

5 General synthesis

We now consider the more challenging problem of synthesizing a unitary circuit from an arbitrary path sum.
Our method attempts to iteratively reduce the number of summed variables in a path sum by alternately
applying generalized permutations and Hadamard gates to the symbolic state. Recall that a (unitary)
generalized permutation is a permutation matrix whose nonzero entries are elements of T = {z ∈ C | |z| = 1}.
The generalized permutations are generated by the gates

Λk(X) : |~x〉 |y〉 7→ |~x〉 |y ⊕
∏
i

xi〉 and Λk(RZ(θ)) : |~x〉 7→ e2πiθ
∏

i xi |~x〉 .

Together with the Hadamard gate this forms an exactly universal set as it includes every single-qubit unitary
along with the cnot gate.

The following fact forms the basis of our synthesis algorithm. It gives a condition on a path sum which
allows a summed variable to be eliminated by multiplication with a Hadamard gate.

Proposition 5.1. Let Ψ : C2m → C2n be a linear operator where

Ψ |~x〉 = N
∑
z∈Z2

∑
~y∈Zk

2

(−1)zQ(~x,~y)e2πiP (~x,~y) |z〉 ⊗ |f(~x, ~y)〉 .

Then (h⊗ in−1)Ψ |~x〉 =
√

2N
∑
~y∈Zk

2
e2πiP (~x,~y) |Q(~x, ~y)〉 ⊗ |f(~x, ~y)〉 .

9



Proof. By Equation (3), since (h⊗ in−1)Ψ |~x〉 = 1√
2
N
∑
z

∑
~y(−1)zQ(~x,~y)+zz′e2πiP (~x,~y) |z′〉 ⊗ |f(~x, ~y)〉

Note that Proposition 5.1 is essentially an inversion of the h gate, h† :
∑
z(−1)xz |z〉 7→ |x〉. We say that

a variable z is reducible in the path sum |Ψ〉 if |Ψ〉 is in the form of Proposition 5.1.

Definition 5.2 (Reducible). A variable z is reducible in an expression of Ψ : C2m → C2n if, up to qubit
reordering, it has the form

Ψ |~x〉 = N
∑
z∈Z2

∑
~y∈Zk

2

(−1)zQ(~x,~y)e2πiP (~x,~y) |z〉 ⊗ |f(~x, ~y)〉 .

At a high level, our algorithm proceeds by attempting to synthesize a generalized permutation which
will leave some path variable reducible. If the process terminates with remaining summed variables, or an
unsynthesizeable ground term e2πiP (~x) |f(~x)〉, the algorithm fails to produce a circuit. Algorithm 2 gives the
high-level algorithm in pseudo-code.

Algorithm 2 General path sum synthesis algorithm

1. Set C to the empty circuit and normalize |Ψ〉 using Equations (2), (3) and (4)

2. For each remaining path variable y in |Ψ〉

(a) If there exists a generalized permutation U such that y is reducible in U† |Ψ〉,
i. |Ψ〉 ← (h⊗ in−1)U† |Ψ〉
ii. Append U(h⊗ in−1) to C

iii. Go to step 1

3. If path variables remain or Ψ is non-unitary, fail. Otherwise, append Ψ† to C and return C.

Finding such a generalized permutation is highly non-trivial. Our method applies a series of symbolic
simplifications, corresponding to Λk(X) and Λk(RZ(θ)) gates, to the term e2πiP (~x,~y) |f(~x, ~y)〉. If these sim-
plifications fail to leave any variable reducible, we fall back to an exponential-time procedure aimed at
computing a substitution of the form in Equation (5) which will make some variable reducible. These
heuristics are described in Appendix A.

6 Experiments

To test the performance and utility of our synthesis methods, we implemented Algorithms 1 and 2 in
the feynman1 software package. In this section, we briefly detail our investigations into applications to
the optimization and decompilation of circuits, and to specification-based synthesis. All Clifford circuits
synthesized have been checked for correctness using the method of [2]. For Algorithm 2, as the method
of [2] often fails to verify circuits extracted using Equation (5), we instead validated correctness of our
synthesis procedure by verifying the individual synthesis steps each on 1000 unitary path sums extracted
from randomly generated Clifford+T circuits. Table 1 gives some statistics from experiments re-synthesizing
random circuits. Random circuits were generated by selecting a given number of gates on a given number
of qubits, taken from the {cnot,h, s} and {cnot,h,t} gate sets for Clifford and Clifford+T , respectively.

Circuit optimization One of the key factors in phase folding optimizations [4, 25] is the placement of
Hadamard gates. It was shown in [5] that the T -count in a Clifford+T circuit can be upper bounded by
O(hn2), where h is the number of Hadamard layers in the circuit. As our Clifford synthesis algorithm
produces circuits with just a single layer of Hadamard gates, it is natural to ask whether we can optimize
T -count by reducing the number of Hadamard layers in Clifford+T circuits.

1Available at https://github.com/meamy/feynman.
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n # gates # circuits avg. time (s) avg. change (+/-) success

Clifford 20 500 1000 0.137 +19.2% –
20 1000 1000 0.481 -12.9% –

50 500 1000 0.264 +90.7% –
50 1000 1000 1.518 +129.1% –

Clifford+T 20 100 1000 0.010 +48.9% 99.9%
20 200 1000 0.045 +93.7% 94.9%
20 300 1000 0.097 +115.9% 74.7%

50 100 1000 0.016 +33.5% 100.0%
50 200 1000 0.044 +49.0% 100.0%
50 300 1000 0.104 +79.4% 99.6%

Table 1: Re-synthesis results for randomly generated circuits on n qubits. Avg. change gives the average
percent increase (+) or decrease (-) in the re-synthesized gate count compared to the original circuit. Success
gives the percentage of circuits successfully re-synthesized.

We implemented a Clifford sub-circuit normalization method (the -clifford pass in feynopt) using
Algorithm 1 to re-synthesize simple greedily chosen Clifford sub-circuits. We tested the effect on T -count
optimization by applying Clifford normalization together with phase folding and compared it against [18] on
the benchmark set of [4]. In all but 4 benchmarks, the same T -count was achieved by normalizing greedily
chosen Clifford sub-circuits and applying phase polynomial optimizations. In two of those cases, qcla-com7
and csla-mux3, our method produced lower T -count circuits — 94 (down from 95) and 60 (down from 62),
respectively. For the other two cases, ham15-med and adder8, our method produced worse results — 230 (up
from 212) and 215 (up from 173), respectively.

More broadly, we might expect to be able to optimize a circuit by resynthesizing its simplified path sum
using the general synthesis algorithm Algorithm 2. This is often effective when the path sum is simple, as
in the resynthesized circuits corresponding to sub-circuits of the adder8 benchmark below, but as the path
sum becomes increasingly complex extraction typically performs worse than human designs. We leave it as
an avenue for future work to make symbolic synthesis practical for circuit optimization, and in particular to
develop effective peephole optimization procedures.

• • •
• • •
• •

−→
•

•

• • •
• • •
• • −→

•
•

• •

Decompilation An interesting application of our symbolic synthesis algorithm is to the decompilation of
quantum circuits. Classically, decompilation is the process of translating a program in a low-level language
to equivalent high-level source code, typically used for reverse engineering or recompilation. As the gate set
targeted by Algorithm 2 is quite high-level, in many cases it can be used to effectively decompile lower-level
circuits. This decompilation can potentially help developers to examine the high-level structure of a low-level
circuit, and also allow optimizations targeting higher level gate sets to be performed on circuits written over
low-level gate sets, such as Clifford+T . Below we give some examples of standard circuits from the literature
decompiled using Algorithm 2. The decompiler can be accessed with the -decompile option in feynopt.

T • T † T † •

T • T † • •
H T • T • H

−→

•
•

T • •
T T †

−→
•
S

• •
• •
• •
• •

−→

•
•
•

•
•

• •
H T T † iX T T † H

−→

• • • •
• • S† •
• •
• • S† S
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The bottom right circuit above is a relative phase Toffoli gate implementation taken from [6]. The utility
of decompilation is apparant here, as both the fact that it implements a Toffoli up to phase and the exact
form of the relative phase can be readily observed from the decompiled circuit.

Specification-based synthesis In [2] it was noted that path sums offer a convenient form of logical
specification for many quantum computations, being very close to the “textbook” specification. Algorithm 2
gives a method of synthesizing a circuit directly from such a specification. Such specifications include not only
classical reversible functions such as |x1x2x3〉 7→ |x1x2(x3 ⊕ x1x2)〉, which can be synthesized by existing
reversible circuit synthesis methods, but also classical functions “in the phase,” up to relative phases, or
inside superpositions. We illustrate this by using Algorithm 2 to synthesize the quantum Fourier transform.

Recall that the n-qubit quantum fourier transform can be expressed as QFTn |~x〉 = 1√
2n

∑
~y∈Zn

2
ω~x~y2n |~y〉

where ~x~y is the integer product of ~x and ~y. In the 3 qubit case, expanding the integer multiplication to a
multilinear polynomial we have

QFT3 |x1x2x3〉 =
1√
23

∑
y1,y2,y3

ωx3y3ix3y2+x2y3(−1)x3y1+x2y2+x1y3 |y1y2y3〉

where y1 is reducible, and in particular

(h⊗ i2)QFT3 |x1x2x3〉 =
1√
22

∑
y2,y3

ωx3y3ix3y2+x2y3(−1)x2y2+x1y3 |x3y2y3〉 .

While neither of y2 or y3 are reducible above, the ωx3y3 and ix3y2 terms can be eliminated by applying
controlled-t† and -s† gates, respectively, leaving y2 reducible:

(Λ(s†)⊗ i)(swap⊗ i)(i⊗ Λ(t†))(swap⊗ i)(h⊗ i2)QFT3 |x1x2x3〉 =
1√
22

∑
y2,y3

ix2y3(−1)x2y2+x1y3 |x3y2y3〉 .

After eliminating y2, the process repeats for y1, leaving a final permutation to be synthesized.
A 5 qubit QFT circuit synthesized with our implementation is shown verbatim below, where Rk :=

RZ(1/2k). We were able to synthesize instances on up to 50 qubits in just seconds on a desktop computer.

• • • • H

• • • H R2

• • H R2 R3

• H R2 R3 R4

H R2 R3 R4 R5

7 Conclusion

In this paper we looked at the problem of synthesis of unitary quantum circuits from symbolic expressions
as sums-over-paths. We showed that we cannot hope to efficiently synthesize a circuit from a general path
sum efficiently, as the problem of checking whether there the path sum represents a unitary transformation
is itself co-NP-hard. A stronger result was given recently for the extraction of ZX-diagrams [15], though
their work did not address the complexity of the potentially easier problem of unitarity testing. The problem
of unitarity testing for ZX-diagrams is likewise believed to be intractable [30].

For the restricted case of Clifford operations, we showed that a circuit can be synthesized efficiently in the
form C1HC2 for Hadamard-free Clifford circuits C1 and C2. For more general path sums we gave a heuristic
based on symbolic manipulation and simplification of the sum. We experimentally validated our method,
showing that most path sums corresponding to unitary transformations can in fact be synthesized. Moreover,
our algorithm is capable of producing natural, high-level circuit designs for some path sums, including the
quantum Fourier transform. It remains as a course of future work however to develop a complete synthesis
algorithm, as well as to reduce the cost of synthesized circuits.
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A Finding generalized permutations

In this appendix we detail our method for finding a generalized permutation in step 2.(a) of Algorithm 2.
Compared to Clifford operators, simplification via Proposition 2.9 may not always leave the path sum in

a reducible state. For instance, the path sum expression below, corresponding to a unitary transformation,
is fully reduced with respect to Equations (2), (3) and (4):

1√
22

∑
y1,y2

ix2y1−x2y2(−1)x1y1+x1y2+x2y1y2 |y1〉 |y2〉

However, neither y1 nor y2 are reducible due to the quadratic terms x2y1 and x2y2 in the exponent of i.
At the moment, it is unclear how to proceed symbolically to find a generalized permutation that will make
either path variable reducible in the above expression.
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Our heuristic method of producing a generalized permutation proceeds in increasingly costly circuit stages
in an attempt to synthesize as efficient circuits as possible. Rather than attempt to synthesize a distinct
generalized permutation for every path variable y as described in Algorithm 2, we first apply a sequence of
simplification stages generically to both reduce the redundant synthesis work, and produce simpler circuits
in practice. The sequence of stages is given in Algorithm 3, and the individual synthesis steps are described
in detail below.

Algorithm 3 Generalized permutation synthesis heuristic

1. Apply affine simplifications to the output state |f(~x, ~y)〉

2. Apply non-linear simplifications to the phase e2πiP (~x,~y)

3. Apply non-linear simplifications to the output state |f ′(~x, ~y)〉

4. Apply non-linear simplifications to the phase e2πiP
′(~x,~y)

5. If no path variable is reducible, attempt degree reduction on each variable

Affine simplifications As X and CNOT gates are relatively inexpensive, the first stage of our generalize
permutation synthesis attempts to simplify the output |f(~x, ~y)〉 of the path sum as much as possible using
only these affine transformations. In order to reduce the number of high-degree terms, which would otherwise
require expensive multiply-controlled Toffoli gates, we perform affine simplifications on a linearization of f .

Specifically, we write each fi(~x, ~y) as a sparse vector ~ui ∈ Z2n+k

2 using reverse lexociographic order for the

encoding of monomials, then set A =
[
u1 u2 . . . un

]T
and use Gaussian elimination to compute a sequence

of CNOT gates reducing A to echelon form. The example below illustrates our method.

Example A.1. Consider the path sum |x1〉 |x2〉 |x3 ⊕ x1x2〉 |x4 ⊕ x1x2〉. This could naturally by synthesized
using two non-linear Toffolis to eliminate the x1x2 terms from the third and forth qubits. The resulting circuit
is shown below:

x1 • • x1
x2 • • x2
x3 x3 ⊕ x1x2
x4 x4 ⊕ x1x2

Alternatively, we can write the output as a (sparse) linear system over all monomials in x1, x2, x3, x4 as
shown below:

x1x2 x4 x3 x2 x1
x1 0 0 0 0 1
x2 0 0 0 1 0

x3 ⊕ x1x2 1 0 1 0 0
x4 ⊕ x1x2 1 1 0 0 0

We use reverse lexicographic order so that reduction to echelon form will prioritize the number of high
degree terms. Reducing this to echelon form results in a single CNOT gate and reduces the state to
|x1〉 |x2〉 |x3 ⊕ x1x2〉 |x4 ⊕ x3〉. Synthesizing this remaining transformation gives the overall circuit

x1 • x1
x2 • x2
x3 • • x3 ⊕ x1x2
x4 x4 ⊕ x1x2
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Phase simplifications To reduce and simplify the number of terms in the phase e2πiP (~x,~y) of a path sum
controlled RZ gates with continuous parameters are used. In particular, given an n-dimensional path sum
e2πiθ

∏
i xi |~x〉, we can reduce the phase term by applying a Λn(RZ(−θ)) gate, since

Λn(RZ(−θ)) : e2πiθ
∏

i xi |~x〉 7→ |~x〉 .

As the output of the path sum is in some state |f(~x, ~y)〉, to apply the above rule we first need to apply a change
of frame by setting fi(~x, ~y) = zi and writing the phase polynomial P (~x, ~y) as P ′(~x, ~y, ~z). This is achieved
by, for each fi, letting l be the largest (non-zero) degree term of fi and substituting l ← zi ⊕ l ⊕ fi(~x, ~y) in
the path sum.

Example A.2. Consider the irreducible path sum 1√
2

∑
y1
ω−x1ix1y1−x2y1(−1)x1x2y1 |x1 ⊕ x2〉 |y1〉. Substi-

tuting [x2 ← z1 ⊕ x1, y1 ← z2] gives the re-framed path sum

ω−x1i−z1z2(−1)x1z2 |z1〉 |z2〉 .

Applying a controlled S gate to eliminate the term i−z1z2 and rolling back the substitutions gives

ω−x1(−1)x1y1 |x1 ⊕ x2〉 |y1〉 .

The variable y1 is now reducible, so we can finish synthesis by applying a Hadamard to the second qubit,
then synthesizing the final generalized permutation |x1x2〉 7→ ω−x1 |x1 ⊕ x2〉 |x1〉. The resulting circuit is
given below:

x1 • x1 ⊕ x2

x2 T † • H S† y1

In our implementation, we apply phase simplifications both before and after non-linear simplifications in
the state. This is so that we can effectively utilize high degree terms in the state to simplify high degree
terms in the phase with phase gates on fewer qubits. The following example illustrates this effect.

Example A.3. Consider the path sum ωx3+x1x2i−x1x2x3 |x1〉 |x2〉 |x3 ⊕ x1x2〉. Eliminating the x1x2 term in
qubit 3 before simplifying the phase results in the following circuit:

x1 • • • x1

x2 T • • x2

x3 T S† x3 ⊕ x1x2

However, by re-framing the sum with the substitution [x1 ← z1, x2 ← z2, z1z2 ← z3 ⊕ x3] we find

ωx3+x1x2i−x1x2x3 |x1〉 |x2〉 |x3 ⊕ x1x2〉 ≡ ωz3 |z1〉 |z2〉 |z3〉

which can now be simplified with a single T gate. Note that the substitution is applied left to right, rather
than as a simultaneous substitution. The resulting circuit is shown below:

x1 • x1

x2 • x2

x3 T x3 ⊕ x1x2

The final substitution z1z2 ← z3 ⊕ x3 may seem counter-intuitive, as we could instead substitute x3 ←
z3⊕ z1z2. We choose a monomial of maximal degree to substitute in order to avoid inadvertently increasing

16



the degreee of the phase polynomial. For instance, if the initial path sum was instead ωx3 |x1〉 |x2〉 |x3 ⊕ x1x2〉,
substituting x3 ← z3 ⊕ z1z2 results in a re-framed sum of ωz3+z1z2i−z1z2z3 |z1〉 |z2〉 |z3〉 and the final circuit

x1 • • • x1

x2 • T • x2

x3 T S† x3 ⊕ x1x2

By substituting the highest degree monomial instead, we avoid this issue and synthesize the simpler circuit
placing the T gate to the left of the Toffoli.

Non-linear simplifications The non-linear simplification step of our synthesis algorithm reduces the
number of non-linear terms in the output |f(~x, ~y)〉 by applying multiply-controlled Toffoli gates Λk(X) via
the rule

Λk(X) : |~x〉 |f ⊕
∏
i

xi〉 7→ |~x〉 |f〉 .

Our method for non-linear simplifications uses a näıve heuristic whereby a set of variables

V = {v | fi(~x, ~y) = v for some i}

is computed. Any term in f(~x, ~y) which is a product of variables contained in V is then eliminated with an
appropriately controlled Toffoli gate.

This method is far from optimal, and in particular misses cases which can be factorized as a cascade of
Toffoli gates. While better reversible synthesis methods exist, the lack of a known permutation to synthesize
a priori in our case makes it difficult to apply such methods directly. An interesting avenue for future work
would be to re-synthesize the permutation discovered through this process of simplification using state-of-
the-art methods.

Degree reduction In many cases, the simplifications previously described fail to leave some path variable
in a reducible position. When this happens, our last resort is to fall back to an exponential time procedure
we call degree reduction. The idea of is to reduce the degree of the (non-Boolean) parts of a phase polynomial
restricted to a particular variable, as these terms serve as roadblocks for reduction. This can in some cases be
accomplished by applying variable substitutions in such a way as to cancel out terms involving a particular
variable.

To illustrate degree reduction, recall the irreducible path sum expression from the beginning of this
section,

1√
22

∑
y1,y2

ix2y1−x2y2(−1)x1y1+x1y2+x2y1y2 |y1〉 |y2〉

The exponent of i cannot be directly reduced via simple phase simplifications, as both terms depend on
x2. However, we can indirectly eliminate one of these terms by applying Equation (5), substituting y1 with
y1 ⊕ y2:

1√
22

∑
y1,y2

ix2y1−x2y2(−1)x1y1+x1y2+x2y1y2 |y1〉 |y2〉

=
1√
22

∑
y1,y2

ix2(y1⊕y2)−x2y2(−1)x1(y1⊕y2)+x1y2+x2(y1⊕y2)y2 |y1 ⊕ y2〉 |y2〉 by Equation (5)

=
1√
22

∑
y1,y2

ix2y1(−1)x1y1+x2y2 |y1 ⊕ y2〉 |y2〉
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The final expression above can be simplified to 1√
22

∑
y1,y2

ix2y1(−1)x1y1+x2y2 |y1〉 |y2〉 by applying a CNOT

gate, which leaves y2 in a reducible position. The resulting circuit is given below:

x1 H • y1 ⊕ y2
x2 S H • y2

The above example is relatively easy to spot, but more complicated cases may require substitution of
multiple variables, or even non-linear substitutions. Our heuristic revolves around computing a type of cover
for the quotient 2(P/y), where y is the candidate for degree reduction.

Lemma A.4. Let P ∈ R[y, x1, . . . , xn] such that 4(P/y) ≡ 0 mod 2. If there exists a set S ⊆ {1, . . . , n}
such that 4(P/xi) ≡ 0 mod 2 for all i ∈ S and∑

i∈S
2(P/xi) ≡ 2(P/y) mod 2

then 2(P [xi ← xi ⊕ y | i ∈ S]/y) ≡ 0 mod 2

Proof. First recall that x⊕ y = x+ y − 2xy. Hence

2P [xi ← xi ⊕ y | i ∈ S] = 2P +
∑
i∈S

2y(P/xi) +
∑
i∈S

4xiy(P/xi)

Taking the quotient by y we see

2(P [xi ← xi ⊕ y | i ∈ S]/y) = 2(P/y) +
∑
i∈S

2(P/xi) +
∑
i∈S

4xi(P/xi)

≡ 2(P/y) + 2(P/y) mod 2

≡ 0 mod 2

In the context of path sums, Lemma A.4 tells us that if e2πiP (~x,~y) can be written as iyiQ(~x,~y)e2πiR(~x,~y)

for some i, and there exists a subset of path variables {yj | j 6= i} such that e2πiP (~x,~y) = iyjQj(~x,~y)e2πiRj(~x,~y)

and i
∑

j Qj(~x,~y) = iQ(~x,~y), then the simultaneous substitution yj ← yj ⊕ yi will eliminate the term iyiQ(~x,~y).
Additional simplifications in the state may then be further required to leave the path sum in a reducible
state, as in the previous above.
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